Generators, relations and symmetries in pairs of 3×3 unimodular matrices

Article, Preprint English OPEN
Lawton, Sean;
(2006)

Denote the free group on two letters by F2 and the SL(3,C)-representation variety of F2 by R = Hom(F2, SL(3,C)). There is a SL(3,C)-action on the coordinate ring of R, and the geometric points of the subring of invariants is an affine variety X. We determine explicit mi... View more
  • References (23)
    23 references, page 1 of 3

    [1] Abeasis, A., and Pittaluga, M., On a minimal set of generators for the invariants of 3×3 matrices, Comm. Alg. 17(2) (1989), 487-499

    [2] Aslaksen, H., Drensky, V., and Sadikova, L., Defining relations of invariants of two 3 × 3 matrices, J. Algebra 298 (2006), 41-57

    [3] Dolgachev, I.,“Lectures on Invariant Theory,” London Mathematical Lecture Notes Series 296, Cambridge University Press, 2003

    [4] Drensky, V., and Formanek, E., “Polynomial Identity Rings,” Advanced Courses in Mathematics CRM Barcelona, Birkh¨auser Verlag Basel, 2004

    [5] Dubnov, J., Sur une g´en´eralisation de l'´equation de Hamilton-Caley et sur les invariants simultan´es de plusieurs affineurs, Proc. Seminar on Vector and Tensor Analysis, Mechanics Research Inst., Moscow State Univ. 2/3 (1935), 351-367.

    [6] Eisenbud, D., “Commutative Algebra with a View Toward Algebraic Geometry,” Graduate Texts in Mathematics No. 150, Spring-Verlag New York, 1995

    [7] Hungerford, T., “Algebra,” Graduate Texts in Mathematics No. 73, Spring-Verlag New York, 1974 GENERATORS, RELATIONS AND SYMMETRIES IN PAIRS OF 3 × 3 UNIMODULAR MATRICES 21

    [8] Lawton, S., SL(3, C)-Character Varieties and RP2-Structures on a Trinion, PhD Thesis, University of Maryland, 2006

    [9] Magnus, W., Karrass, A., and Solitar, D., “Combinatorial Group Theory: Presentations of Groups in Terms of Generators and Relations,” Pure and Applied Mathematics Vol. XIII, Interscience Publishers, 1966.

    [10] Marincuk, A. and Sibirskii, K., Minimal polynomial bases of affine invariants of square matrices of order three, Mat. Issled. 6 (1971), 100-113

  • Metrics
Share - Bookmark