publication . Article . 2016

Statistical hadronization model analysis of hadron yields in p + Nb and Ar + KCl at SIS18 energies

Krücken, R.; HADES Collaboration; Agakishiev, G.; Arnold, O.; Bałanda, A.; Belver, D.; Belyaev, A.; Berger-Chen, J. C.; Blanco, A.; Böhmer, M.; ...
Open Access English
  • Published: 01 Jun 2016
The HADES data from p+Nb collisions at center of mass energy of √ sNN= 3.2 GeV are analyzed by employing a statistical model. Accounting for the identified hadrons π, η, Λ, K s , ω allows a surprisingly good description of their abundances with parameters Tchem = (99 ± 11) MeV and μb = (619 ± 34) MeV, which fits well in the chemical freeze-out systematics found in heavy-ion collisions. In supplement we reanalyze our previous HADES data from Ar+KCl collisions at √ sNN= 2.6 GeV with an updated version of the statistical model. We address equilibration in heavy-ion collisions by testing two aspects: the description of yields and the regularity of freeze-out paramet...
free text keywords: Nuclear and High Energy Physics, [PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex], [PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex], [PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th], heavy ion collisions, hyperon production, matter, Proton, Quantum number, Hadron, Center of mass, Hadronization, Statistical model, Resonance (particle physics), Physics, Branching fraction, Nuclear physics
Funded by
Study of Strongly Interacting Matter
  • Funder: European Commission (EC)
  • Project Code: 283286
  • Funding stream: FP7 | SP4 | INFRA
FCT| PTDC/FIS/113339/2009
Participation in the HADES experiment
  • Funder: Fundação para a Ciência e a Tecnologia, I.P. (FCT)
  • Project Code: 113339
  • Funding stream: 5876-PPCDTI
43 references, page 1 of 3

eq. (A.3) to Vc. For Vc < V , strange particles are sup- 27. HADES Collaboration (G. Agakishiev et al.), Eur. Phys.

pressed additionally on top of the pure canonical suppres- J. A 41, 243 (2009).

sion. 28. HADES Collaboration (M. Lorenz et al.), PoS From these considerations it becomes clear that the (BORMIO2010) , 038 (2010).

size of FS for a given volume Vc and hence the strength 29. FOPI Collaboration (K. Piasecki et al.), Phys. Rev. C 91, of the suppression depends also on the number of known 054904 (2015).

strange particle states. The more states exist the more 30. FOPI Collaboration (P. Gasik et al.), arXiv:1512.06988 possibilities are available for counterbalancing the strange [nucl-ex].

(anti-strange) quarks. This is of relevance for the compar- 31. N. Herrmann, J.P. Wessels, T. Wienold, Annu. Rev. Nucl.

ison of the different THERMUS versions 2.3 and 3.0. The Part. Sci. 49, 581 (1999).

latter one has more states included, especially the rather 32. W. Reisdorf, H.G. Ritter, Annu. Rev. Nucl. Part. Sci. 47, low-lying K∗(800) states are important in this context. 663 (1997).

33. FOPI Collaboration (W. Reisdorf et al.), Nucl. Phys. A 848, 366 (2010).

34. S.A. Bass et al., Prog. Part. Nucl. Phys. 41, 225 (1998).

References 35. HADES Collaboration (H. Schuldes et al.), J. Phys. Conf. Ser. 599, 012028 (2015).

1. H. Koppe, Z. Naturforsch. A 3, 251 (1948). 36. HADES Collaboration (P. Tlusty et al.), arXiv:0906.2309

2. P. Braun-Munzinger, K. Redlich, J. Stachel, arXiv:nucl- (2009). th/0304013 (2003). 37. HADES Collaboration (G. Agakishiev et al.), Phys. Rev.

3. M. Petran, J. Letessier, V. Petracek, J. Rafelski, Phys. C 80, 025209 (2009). Rev. C 88, 034907 (2013). 38. HADES Collaboration (G. Agakishiev et al.), Phys. Rev.

4. F. Becattini, M. Gazdzicki, A. Keranen, J. Manninen, R. C 82, 044907 (2010). Stock, Phys. Rev. C 69, 024905 (2004). 39. HADES Collaboration (G. Agakishiev et al.), Eur. Phys.

43 references, page 1 of 3
Any information missing or wrong?Report an Issue