Perron-Frobenius theorem for nonnegative multilinear forms and extensions

Article, Preprint English OPEN
Friedland, S. ; Gaubert, S. ; Han, L. (2009)
  • Publisher: Elsevier BV
  • Journal: Linear Algebra and its Applications, volume 438, issue 2, pages 738-749 (issn: 0024-3795)
  • Related identifiers: doi: 10.1016/j.laa.2011.02.042
  • Subject: Geometry and Topology | Numerical Analysis | Algebra and Number Theory | Mathematics - Spectral Theory | 15A48, 47H07, 47H09, 47H10 | Discrete Mathematics and Combinatorics | Mathematics - Numerical Analysis

We prove an analog of Perron-Frobenius theorem for multilinear forms with nonnegative coefficients, and more generally, for polynomial maps with nonnegative coefficients. We determine the geometric convergence rate of the power algorithm to the unique normalized eigenve... View more
  • References (7)

    [1] K.C. Chang, K. Pearson, and T. Zhang, Perron-Frobenius theorem for nonnegative tensors, Commun. Math. Sci. 6, (2008), 507-520.

    [2] S. Friedland, Convergence of products of matrices in projective spaces, Linear Alg. Appl., 413(2006), 247-263.

    [3] S. Gaubert and J. Gunawardena, The Perron-Frobenius theorem for homogeneous, monotone functions, Trans. Amer. Math. Soc. 356 (2004), 4931- 4950.

    [4] M. Akian, S. Gaubert, and A. Guterman. Tropical polyhedra are equivalent to mean payoff games. Eprint arXiv:0912.2462, 2009.

    [5] L.-H. Lim, Singular values and eigenvalues of tensors: a variational approach, Proc. IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP '05), 1 (2005), pp. 129- 132.

    [6] R. D. Nussbaum. Convexity and log convexity for the spectral radius. Linear Algebra and its Applications, 73:59-122, 1986.

    [7] R. D. Nussbaum, Hilbert's projective metric and iterated nonlinear maps, Memoirs Amer. Math. Soc., 1988, vol. 75.

  • Metrics
    No metrics available
Share - Bookmark