Fabrication of Nanostructured PLGA Scaffolds Using Anodic Aluminum Oxide Templates

Conference object, Preprint English OPEN
Hsueh , Cheng-Chih ; Wang , Gou-Jen ; Hsu , Shan-Hui ; Hung , Huey-Shan (2008)
  • Publisher: EDA PUBLISHING Association
  • Subject: [ INFO.INFO-OH ] Computer Science [cs]/Other [cs.OH] | Computer Science - Other Computer Science
    mesheuropmc: macromolecular substances | technology, industry, and agriculture

Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/handle/2042/16838); International audience; PLGA (poly(lactic-co-glycolic acid)) is one of the most used biodegradable and biocompatible materials. Nanostructured PLGA even has great application potentials in tissue engineering. In this research, a fabrication technique for nanostructured PLGA membrane was investigated and developed. In this novel fabrication approach, an anodic aluminum oxide (AAO) film was use as the template ; the PLGA solution was then cast on it ; the vacuum air-extraction process was applied to transfer the nano porous pattern from the AAO membrane to the PLGA membrane and form nanostures on it. The cell culture experiments of the bovine endothelial cells demonstrated that the nanostructured PLGA membrane can double the cell growing rate. Compared to the conventional chemical-etching process, the physical fabrication method proposed in this research not only is simpler but also does not alter the characteristics of the PLGA. The nanostructure of the PLGA membrane can be well controlled by the AAO temperate.
  • References (11)
    11 references, page 1 of 2

    [1] A. L. Luis, J. M. Rodrigues, S. Amado, A. P. Veloso, P. A. ArmadaD-a-Silva, S. Raimondo, F. Fregnan, A. J. Ferreira, M. A. Lopes, J. D. Santos, S. Geuna, A. S. Varejao, A. C. uMriacio, “PLGA 90/10 and Caprolactone biodegradable Nerve guides for thReeconstruction of the Rat sciatic nerve,”Microsurgery, vol. 27, pp. 125-137, 2007.

    [2] G. J. Wang, C. C. Hsueh, S. h. Hsu, H. S. Hung, J. of Micromechanics and Microengineering, “Fabrication of PLGA Microvessel Scaffolds with Circular Microchannels Using SofLtithography,” vol. 17, pp. 20002-005, 2007.

    [3] K. Sonaje, J. L. Italia, G. Sharma, V. Bhardwaj, K. Tikoo, M. N. Kumar, “Development of biodegradable nanoprtaicles for oral delivery of ellagic acid and evaluation of their antidoaxnit efficacy against cyclosporine Ai-nduced nephrotoxicity in rats.” Parhmaceutical Research, vol. 24, no. 5, pp., 2007.

    [4]. G. Mittal, D. K. Sahana, V. Bhardwaj, M. N. Kumar, “Estradiol loaded PLGA nanoparticles for oral administrioan: effect of polymer molecular weight and copolymer composition on leraese behavior in vitro and in vivo.” J. Control Release, vol. 119, no. 1, 778-5, 2007.

    [5] W. H. Ryu, M. Vyakarnam, R. S. Gerco, F. B. Prinz, R. J. Fasching, “Fabrication of multi-layered biodegardable drug delivery device based on micros-tructuring of PLGA polymers”. Biomedical Microdevices, vol. 9, no. 6, pp. 8458-53, 2007.

    [6] N. Csaba, P. Caamano, A. Sánchez, F. Domínquez, M. J. Alonso, “PLGA:Poloxamer and PLGA:Poloxmaine Blend Nanoparticles: New Carriers for Gene Delivery,” Biomacromolecules, vol. 6, no. 1, pp. 2712-78, 2005.

    [7] J. K. Savaiano and T. J. Webst“eAr,ltered responses of chondrocytes to nanophase PLGA/nanophase titania compoitses,” Biomaterials, vol. 25, no. 78-, pp12051-213, 2004.

    [8] G. E. Park, K. Park, T. J. Wre,bs“tAeccelerated chondrocyte functions on NaOHt-reated PLGA scaffolds,” Biomaterials, vol. 26, no. 16, pp. 30753-082, 2005.

    [9] T. J. Webster, Z. Tong, J. Liu, M. K. Banks, “Adhesion of Pseudomonas fluorescens onto nanophase materials,” Naneocthnology, vol. 16, S449S-457, 2005.

    [10] D. C. Miller, K. MHa.berstroh, T. J. Webster,“PLGA nanometer surface features manipulate fibronectin intaecrtions for improved vascular cell adhesion,” J. of Biomedical MateriaRlsesearch Part A, vol. 81A, no. 3, pp. 6786-84, 2007.

  • Metrics
    No metrics available
Share - Bookmark