On multidimensional item response theory – a coordinate free approach

Preprint, Other literature type English OPEN
Antal, Tamás;

A coordinate system free definition of complex structure multidimensional item response theory (MIRT) for dichotomously scored items is presented. The point of view taken emphasizes the possibilities and subtleties of understanding MIRT as a multidimensional extension o... View more
  • References (13)
    13 references, page 1 of 2

    [1] A. Birnbaum. Some latent trait models and their use in inferring an examinee's ability. In F. M. Lord and M. R. Novick, editors, Statistical Theories of Mental Test Scores, pages 397-479. Reading, MA: MIT Press, 1968.

    [2] Albert Einstein. Zur Elektrodynamik bewegter K¨orper. Ann. Phys., 17:891-921, 1905.

    [3] Albert Einstein. Grundlagen der allgemeinene Relativita¨tstheorie (The foundation of the general theory of relativity). Ann. Phys., 49(4):284-339, 1916.

    [4] Gerhard H. Fischer. On the existence and uniqueness of maximumlikelihood estimates in the Rasch model. Psychometrika, 46(1):59-77, 1980. MR0655008

    [5] Paul R. Halmos. Finite-Dimensional Vector Spaces. New York: Springer, 2 edition, 1974. MR0409503

    [6] Tama´s Matolcsi. A Concept of Mathematical Physics: Models in Mechanics. Akad´emiai Kiado´, Budapest, 1986. MR0873263

    [7] Tama´s Matolcsi. Spacetime without Reference Frames. Akad´emiai Kiado´, Budapest, 1993. MR1240055

    [8] R. L. McKinley and M. D. Reckase. The use of the general Rasch model with multidimensional item response data. Research Report ONR 82-1, 1982.

    [9] Eiji Muraki. A generalized partial credit model: Application of an EM algorithm. Appl. Psychol. Meas., 16:159-176, 1992.

    [10] M. D. Reckase. A linear logistic multidimensional model for dichotomous item response data. In W. J. van der Linden and R. K. Hambleton, editors, Handbook of Modern Item Response Theory, pages 271-286. New York: Springer, 1997.

  • Metrics
Share - Bookmark