Components of the Hilbert scheme of space curves on low-degree smooth surfaces

Article, Preprint English OPEN
Kleppe, Jan Oddvar ; Ottem, John Christian (2015)
  • Publisher: World Scientific Publishing
  • Related identifiers: doi: 10.1142/S0129167X15500172
  • Subject: Cubic surfaces | Space curves | Hilbert flag-scheme | VDP::Matematikk og Naturvitenskap: 400::Matematikk: 410 | Mathematics - Algebraic Geometry | Hilbert scheme | Quartic surfaces | 14C05 (Primary), 14C20, 14K30, 14J28, 14H50 (Secondary) | :Matematikk og Naturvitenskap: 400::Matematikk: 410 [VDP]

We study maximal families W of the Hilbert scheme, H(d, g)sc, of smooth connected space curves whose general curve C lies on a smooth surface S of degree s. We give conditions on C under which W is a generically smooth component of H(d, g)sc and we determine dim W. If s = 4 and W is an irreducible component of H(d, g)sc, then the Picard number of S is at most 2 and we explicitly describe, also for s ≥ 5, non-reduced and generically smooth components in the case Pic(S) is generated by the classes of a line and a smooth plane curve of degree s - 1. For curves on smooth cubic surfaces the first author finds new classes of non-reduced components of H(d, g)sc, thus making progress in proving a conjecture for such families. Electronic version of an article published as Kleppe, J. O., & Ottem, J. C. (2015). Components of the Hilbert scheme of space curves on low-degree smooth surfaces. International Journal of Mathematics, 26(02), 1550017. © World Scientific Publishing Company.
  • References (33)
    33 references, page 1 of 4

    [1] A. Dolcetti, G. Pareschi. On Linearly Normal Space Curves. Math. Z. 198, (1988), 73-82.

    [2] D. Eklund Curves on Heisenberg invariant quartic surfaces in projective 3-space. Preprint; arXiv:1010.4058

    [3] Ph. Ellia: D'autres composantes non réduites de Hilb P3, Math. Ann. 277, (1987) 433-446.

    [4] G. Ellingsrud. Sur le schéma de Hilbert des variétés de codimension 2 dans Pe a cône de Cohen-Macaulay, Ann. Scient. Éc. Norm. Sup. 8 (1975), 423-432.

    [5] G. Ellingsrud and C. Peskine. Anneau de Gorenstein associé à un fibré inversible sur une surface de l'espace et lieu de Noether-Lefschetz Proceedings of the Indo-French Conference on Geometry (Bombay, 1989), 29-42, Hindustan Book Agency, Delhi, 1993.

    [6] G. Fløystad. Determining obstructions for space curves, with application to non-reduced components of the Hilbert scheme. J. reine angew. Math. 439 (1993), 11-44.

    [7] A. Grothendieck. Les schémas de Hilbert. Séminaire Bourbaki, exp. 221 (1960).

    [8] A. Grothendieck. Les schémas des Picard: théorème d'existence. Séminaire Bourbaki, exp. 232 (1961/62).

    [9] S. Giuffrida. Graded Betti numbers and Rao modules of curves lying on a smooth cubic surface in P3, Queen's Papers in Pure and Applied Math. 88 (1991) A1-A61.

    [10] S. Giuffrida R. Maggioni. Generators for the ideal of an integral curve lying on a smooth quartic surface, J. Pure and Applied algebra 76 (1991) 317-332.

  • Metrics
    No metrics available
Share - Bookmark