publication . Article . Preprint . 2020

Littlest inverse seesaw model

Stephen F. King; Stephen F. King; A. E. Cárcamo Hernández; A. E. Cárcamo Hernández;
Open Access English
  • Published: 01 Apr 2020 Journal: Nuclear Physics B, volume 953, page 114,950 (issn: 05503213, Copyright policy)
  • Country: United Kingdom
Abstract
We propose a minimal predictive inverse seesaw model based on two right-handed neutrinos and two additional singlets, leading to the same low energy neutrino mass matrix as in the Littlest Seesaw (LS) (type I) model. In order to implement such a Littlest Inverse Seesaw (LIS) model, we have used an $S_{4}$ family symmetry, together with other various symmetries, flavons and driving fields. The resulting LIS model leads to an excellent fit to the low energy neutrino parameters, including the prediction of a normal neutrino mass ordering, exactly as in the usual LS model. However, unlike the LS model, the LIS model allows charged lepton flavour violating (CLFV) pro...
Subjects
arXiv: High Energy Physics::PhenomenologyHigh Energy Physics::Experiment
free text keywords: High Energy Physics - Phenomenology, Nuclear and High Energy Physics, Nuclear and particle physics. Atomic energy. Radioactivity, QC770-798, Lepton, Particle physics, Homogeneous space, Inverse, Seesaw molecular geometry, Neutrino, Mass matrix, Low energy, Physics
Funded by
RCUK| Exploring the limits of the standard model and beyond
Project
  • Funder: Research Council UK (RCUK)
  • Project Code: ST/L000296/1
  • Funding stream: STFC
,
EC| InvisiblesPlus
Project
InvisiblesPlus
InvisiblesPlus
  • Funder: European Commission (EC)
  • Project Code: 690575
  • Funding stream: H2020 | MSCA-RISE
,
EC| ELUSIVES
Project
ELUSIVES
The Elusives Enterprise: Asymmetries of the Invisible Universe
  • Funder: European Commission (EC)
  • Project Code: 674896
  • Funding stream: H2020 | MSCA-ITN-ETN
118 references, page 1 of 8

[17] S. F. King, S. Molina Sedgwick and S. J. Rowley, JHEP 1810 (2018) 184 doi:10.1007/JHEP10(2018)184 [arXiv:1808.01005 [hep-ph]].

[18] S. F. King, JHEP 1307, 137 (2013) doi:10.1007/JHEP07(2013)137 [arXiv:1304.6264 [hep-ph]].

[19] F. Bjorkeroth and S. F. King, J. Phys. G 42, no. 12, 125002 (2015) doi:10.1088/0954-3899/42/12/125002 [arXiv:1412.6996 [hep-ph]].

[20] S. F. King, JHEP 1602, 085 (2016) doi:10.1007/JHEP02(2016)085 [arXiv:1512.07531 [hep-ph]].

[21] F. Bjorkeroth, F. J. de Anda, I. de Medeiros Varzielas and S. F. King, JHEP 1506, 141 (2015) doi:10.1007/JHEP06(2015)141 [arXiv:1503.03306 [hep-ph]].

[22] F. Bjorkeroth, F. J. de Anda, I. de Medeiros Varzielas and S. F. King, JHEP 1510, 104 (2015) doi:10.1007/JHEP10(2015)104 [arXiv:1505.05504 [hep-ph]].

[23] S. F. King and C. Luhn, JHEP 1609, 023 (2016) doi:10.1007/JHEP09(2016)023 [arXiv:1607.05276 [hep-ph]].

[24] P. Ballett, S. F. King, S. Pascoli, N. W. Prouse and T. Wang, JHEP 1703, 110 (2017) doi:10.1007/JHEP03(2017)110 [arXiv:1612.01999 [hep-ph]].

[25] S. F. King and C. C. Nishi, Phys. Lett. B 785, 391 (2018) doi:10.1016/j.physletb.2018.08.056 [arXiv:1807.00023 [hep-ph]].

[26] S. F. King and Y. L. Zhou, arXiv:1901.06877 [hep-ph].

[27] A. Abada, D. Das, A. Vicente and C. Weiland, JHEP 1209, 015 (2012) doi:10.1007/JHEP09(2012)015 [arXiv:1206.6497 [hep-ph]].

[28] F. Deppisch and J. W. F. Valle, Phys. Rev. D 72, 036001 (2005) doi:10.1103/PhysRevD.72.036001 [hep-ph/0406040].

[29] A. Abada, M. E. Krauss, W. Porod, F. Staub, A. Vicente and C. Weiland, JHEP 1411, 048 (2014) doi:10.1007/JHEP11(2014)048 [arXiv:1408.0138 [hep-ph]].

[30] A. Abada and M. Lucente, Nucl. Phys. B 885, 651 (2014) doi:10.1016/j.nuclphysb.2014.06.003 [arXiv:1401.1507 [hep-ph]].

[31] A. Abada and T. Toma, JHEP 1608, 079 (2016) doi:10.1007/JHEP08(2016)079 [arXiv:1605.07643 [hep-ph]].

118 references, page 1 of 8
Any information missing or wrong?Report an Issue