CORECLUSTER: A Degeneracy Based Graph Clustering Framework

Conference object English OPEN
Giatsidis , Christos; Malliaros , Fragkiskos; Thilikos , Dimitrios M.; Vazirgiannis , Michalis; (2014)
  • Publisher: HAL CCSD
  • Subject: [ INFO.INFO-DM ] Computer Science [cs]/Discrete Mathematics [cs.DM]

International audience; Graph clustering or community detection constitutes an important task forinvestigating the internal structure of graphs, with a plethora of applications in several domains. Traditional tools for graph clustering, such asspectral methods, typicall... View more
  • References (34)
    34 references, page 1 of 4

    Abou-Rjeili, A., and Karypis, G. 2006. Multilevel algorithms for partitioning power-law graphs. In IPDPS, 124- 124.

    Alvarez-Hamelin, J. I.; Dall'asta, L.; Barrat, A.; and Vespignani, A. 2005. k-core decomposition: a tool for the visualization of large scale networks. arXiv.

    Andersen, R., and Chellapilla, K. 2009. Finding dense subgraphs with size bounds. In WAW, 25-37.

    Arthur, D., and Vassilvitskii, S. 2007. k-means++: the advantages of careful seeding. In SODA, 1027-1035.

    Batagelj, V., and Zaversnik, M. 2003. An o(m) algorithm for cores decomposition of networks. CoRR.

    Cheng, J.; Ke, Y.; Chu, S.; and Ozsu, M. 2011. Efficient core decomposition in massive networks. In ICDE, 51-62.

    Clauset, A.; Newman, M. E. J.; and Moore, C. 2004. Finding community structure in very large networks. Phys. Rev. E 70(6):066111.

    Drineas, P.; Frieze, A.; Kannan, R.; Vempala, S.; and Vinay, V. 2004. Clustering large graphs via the singular value decomposition. Mach. Learn. 56(1-3).

    Fortunato, S. 2010. Community detection in graphs. Physics Reports 486(3-5).

    Giatsidis, C.; Malliaros, F. D.; Thilikos, D. M.; and Vazirgiannis, M. 2014. Supplemental material: CoreCluster: A degeneracy based graph clustering framework. http://www.lix.polytechnique.

  • Metrics
    No metrics available
Share - Bookmark