Effective Coefficient Asymptotics of Multivariate Rational Functions via Semi-Numerical Algorithms for Polynomial Systems

Preprint English OPEN
Melczer, Stephen; Salvy, Bruno;
  • Publisher: HAL CCSD
  • Subject: Mathematics - Combinatorics | [INFO.INFO-SC]Computer Science [cs]/Symbolic Computation [cs.SC] | Computer Science - Symbolic Computation

47 pages; The coefficient sequences of multivariate rational functions appear in many areas of combinatorics. Their diagonal coefficient sequences enjoy nice arithmetic and asymptotic properties, and the field of analytic combinatorics in several variables (ACSV) makes ... View more
  • References (14)
    14 references, page 1 of 2

    [1] Yves André. Séries Gevrey de type arithmétique. I. Théorèmes de pureté et de dualité. Annals of Mathematics. Second Series, 151(2):705-740, 2000.

    [2] Y. Baryshnikov, S. Melczer, and R. Pemantle. Non-proper morse theory for complex algebraic varieties. In preparation, 2018.

    [3] Y. Baryshnikov and R. Pemantle. Asymptotics of multivariate sequences, part iii: quadratic points. Adv. Math., 228:3127-3206, 2011.

    [4] Yuliy Baryshnikov, Stephen Melczer, Robin Pemantle, and Armin Straub. Diagonal Asymptotics for Symmetric Rational Functions via ACSV. In James Allen Fill and Mark Daniel Ward, editors, 29th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2018), volume 110 of Leibniz International Proceedings in Informatics (LIPIcs), pages 12:1-12:15, Dagstuhl, Germany, 2018. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

    [20] Carlos D'Andrea, Teresa Krick, and Martín Sombra. Heights of varieties in multiprojective spaces and arithmetic Nullstellensätze. Ann. Sci. Éc. Norm. Supér. (4), 46(4):549-627 (2013), 2013.

    [21] N. G. De Bruijn. Asymptotic Methods in Analysis. Dover, 1981. A reprint of the third North Holland edition, 1970 (first edition, 1958).

    [22] T. DeVries, J. van der Hoeven, and R. Pemantle. Automatic asymptotics for coefficients of smooth, bivariate rational functions. Online J. Anal. Comb., 6:24 pages, 2011.

    [23] P. Flajolet and R. Sedgewick. Analytic Combinatorics. Cambridge University Press, 2009.

    [24] Harry Furstenberg. Algebraic functions over finite fields. J. Algebra, 7:271-277, 1967.

    [54] R. Pemantle and M. C. Wilson. Asymptotics of multivariate sequences: I. Smooth points of the singular variety. J. Comb. Theory, Ser. A, 97(1):129-161, 2002.

  • Related Research Results (2)
  • Related Organizations (3)
  • Metrics
Share - Bookmark