A numerical scheme for the one-dimensional pressureless gases system

Article English OPEN
Boudin, Laurent; Mathiaud, Julien;
(2012)
  • Publisher: Wiley
  • Related identifiers: doi: 10.1002/num.20700
  • Subject: [INFO.INFO-NA]Computer Science [cs]/Numerical Analysis [cs.NA] | [ INFO.INFO-NA ] Computer Science [cs]/Numerical Analysis [cs.NA]

International audience; In this work, we investigate the numerical solving of the one-dimensional pressureless gases system. After briefly recalling the mathematical framework of the duality solutions introduced by Bouchut and James, we point out that the upwind scheme ... View more
  • References (27)
    27 references, page 1 of 3

    [1] F. Berthelin. Existence and weak stability for a pressureless model with unilateral constraint. Math. Models Methods Appl. Sci., 12(2):249-272, 2002.

    [2] F. Berthelin, P. Degond, M. Delitala, and M. Rascle. A model for the formation and evolution of traffic jams. Arch. Ration. Mech. Anal., 187(2):185-220, 2008.

    [3] C. Berthon, M. Breuss, and M.-O. Titeux. A relaxation scheme for the approximation of the pressureless Euler equations. Numer. Methods Partial Differential Equations, 22(2):484-505, 2006.

    [4] F. Bouchut. On zero pressure gas dynamics. In Advances in kinetic theory and computing, volume 22 of Ser. Adv. Math. Appl. Sci., pages 171-190. World Sci. Publ., River Edge, NJ, 1994.

    [5] F. Bouchut and F. James. One-dimensional transport equations with discontinuous coefficients. Nonlinear Anal., 32(7):891-933, 1998.

    [6] F. Bouchut and F. James. Duality solutions for pressureless gases, monotone scalar conservation laws, and uniqueness. Comm. Partial Differential Equations, 24(11- 12):2173-2189, 1999.

    [7] F. Bouchut, F. James, and S. Mancini. Uniqueness and weak stability for multidimensional transport equations with one-sided Lipschitz coefficient. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 4(1):1-25, 2005.

    [8] F. Bouchut, S. Jin, and X. Li. Numerical approximations of pressureless and isothermal gas dynamics. SIAM J. Numer. Anal., 41(1):135-158 (electronic), 2003.

    [9] L. Boudin. A solution with bounded expansion rate to the model of viscous pressureless gases. SIAM J. Math. Anal., 32(1):172-193 (electronic), 2000.

    [10] L. Boudin and J. Mathiaud. Convergence of a viscous numerical scheme towards the inviscid one-dimensional pressureless gases system. Work in progress.

  • Metrics
    No metrics available
Share - Bookmark