publication . Article . Preprint . Other literature type . 2016

twist of generalized skyrmions and spin vortices in a polariton superfluid

Donati, Stefano; Dominici, Lorenzo; Dagvadorj, Galbadrakh; Ballarini, Dario; De Giorgi, Milena; Bramati, Alberto; Gigli, Giuseppe; Rubo, Yuri G.; Szymańska, Marzena Hanna; Sanvitto, Daniele;
Open Access
  • Published: 13 Dec 2016 Journal: Proceedings of the National Academy of Sciences, volume 113, pages 14,926-14,931 (issn: 0027-8424, eissn: 1091-6490, Copyright policy)
  • Publisher: Proceedings of the National Academy of Sciences
Abstract
We study the spin vortices and skyrmions coherently imprinted into an exciton-polariton condensate on a planar semiconductor microcavity. We demonstrate that the presence of a polarization anisotropy can induce a complex dynamics of these structured topologies, leading to the twist of their circuitation on the Poincar\'e sphere of polarizations. The theoretical description of the results carries the concept of generalized quantum vortices in two-component superfluids, which are conformal with polarization loops around an arbitrary axis in the pseudospin space.
Subjects
arXiv: Condensed Matter::Quantum GasesCondensed Matter::OtherCondensed Matter::Mesoscopic Systems and Quantum Hall Effect
free text keywords: Multidisciplinary, Quantum mechanics, Physics, Twist, Polariton, Polariton superfluid, Polarization (waves), Spin-½, Superfluidity, Vortex, Condensed matter physics, Skyrmion, Condensed Matter - Quantum Gases, Condensed Matter - Mesoscale and Nanoscale Physics, Physics - Optics, Physical Sciences
Funded by
RCUK| Novel superfluid phenomena in semiconductor microcavities
Project
  • Funder: Research Council UK (RCUK)
  • Project Code: EP/I028900/2
  • Funding stream: EPSRC
,
EC| POLAFLOW
Project
POLAFLOW
Polariton condensates: from fundamental physics to quantum based devices
  • Funder: European Commission (EC)
  • Project Code: 308136
  • Funding stream: FP7 | SP2 | ERC
,
RCUK| Coherent quantum matter out of equilibrium - from fundamental physics towards applications
Project
  • Funder: Research Council UK (RCUK)
  • Project Code: EP/K003623/2
  • Funding stream: EPSRC
40 references, page 1 of 3

[1] Y. M. Shnir, Magnetic Monopoles (Springer-Verlag, Berlin Heidelberg, 2005).

[2] P. A. M. Dirac, Quantised singularities in the electromagnetic field, Proc. R. Soc. Lond. 133 (1931).

[3] G. E. Volovik, The Universe in a Helium Droplet (Oxford University Press, New York, 2003).

[4] C. Castelnovo, R. Moessner, and S. L. Sondhi, Magnetic monopoles in spin ice, Nature 451, 42 (2008). [OpenAIRE]

[5] D. J. P. Morris, D. A. Tennant, S. A. Grigera, B. Klemke, C. Castelnovo, R. Moessner, C. Czternasty, M. Meissner, K. C. Rule, J.-U. Hoffmann, K. Kiefer, S. Gerischer, D. Slobinsky, and R. S. Perry, Dirac strings and magnetic monopoles in the spin ice Dy2Ti2O7, Science 326, 411 (2009).

[6] I. Chuang, R. Durrer, N. Turok, and B. Yurke, Cosmology in the laboratory: Defect dynamics in liquid crystals, Science 251, 1336 (1991). [OpenAIRE]

[7] R. Hivet, H. Flayac, D. D. Solnyshkov, D. Tanese, T. Boulier, D. Andreoli, E. Giacobino, J. Bloch, A. Bramati, G. Malpuech, and A. Amo, Half-solitons in a polariton quantum fluid behave like magnetic monopoles, Nat. Phys. 8, 724 (2012).

[8] M. Ray, E. Ruokokoski, S. Kandel, M. Mo¨ tto¨ nen, and D. Hall, Observation of Dirac monopoles in a synthetic magnetic field, Nature 505, 657 (2014). [OpenAIRE]

[9] M. W. Ray, E. Ruokokoski, K. Tiurev, M. Mo¨ tto¨ nen, and D. S. Hall, Observation of isolated monopoles in a quantum field, Science 348, 544 (2015). [OpenAIRE]

[10] Z. Fang, N. Nagaosa, K. S. Takahashi, A. Asamitsu, R. Mathieu, T. Ogasawara, H. Yamada, M. Kawasaki, Y. Tokura, and K. Terakura, The anomalous Hall effect and magnetic monopoles in momentum space, Science 302, 92 (2003). [OpenAIRE]

[11] P. Milde, D. Ko¨ hler, J. Seidel, L. M. Eng, A. Bauer, A. Chacon, J. Kindervater, S. M u¨hlbauer, C. Pfleiderer, S. Buhrandt, C. Sch u¨tte, and A. Rosch, Unwinding of a skyrmion lattice by magnetic monopoles, Science 340, 1076 (2013).

[12] M. Toledo-Solano, M. E. Mora-Ramos, A. Figueroa, and Y. G. Rubo, Warping and interactions of vortices in excitonpolariton condensates, Phys. Rev. B 89, 035308 (2014).

[13] F. Manni, Y. Le´ger, Y. G. Rubo, R. Andre´, and B. Deveaud, Hyperbolic spin vortices and textures in exciton-polariton condensates, Nat. Commun. 4 (2013).

[14] L. Sadler, J. Higbie, S. Leslie, M. Vengalattore, and D. Stamper-Kurn, Spontaneous symmetry breaking in a quenched ferromagnetic spinor Bose-Einstein condensate, Nature 443, 312 (2006). [OpenAIRE]

[15] A. Amo, D. Sanvitto, F. P. Laussy, D. Ballarini, E. del Valle, M. D. Martin, A. Lemaˆıtre, J. Bloch, D. N. Krizhanovskii, M. S. Skolnick, C. Tejedor, and L. Vi n˜a, Collective fluid dynamics of a polariton condensate in a semiconductor microcavity. Nature 457, 291 (2009).

40 references, page 1 of 3
Abstract
We study the spin vortices and skyrmions coherently imprinted into an exciton-polariton condensate on a planar semiconductor microcavity. We demonstrate that the presence of a polarization anisotropy can induce a complex dynamics of these structured topologies, leading to the twist of their circuitation on the Poincar\'e sphere of polarizations. The theoretical description of the results carries the concept of generalized quantum vortices in two-component superfluids, which are conformal with polarization loops around an arbitrary axis in the pseudospin space.
Subjects
arXiv: Condensed Matter::Quantum GasesCondensed Matter::OtherCondensed Matter::Mesoscopic Systems and Quantum Hall Effect
free text keywords: Multidisciplinary, Quantum mechanics, Physics, Twist, Polariton, Polariton superfluid, Polarization (waves), Spin-½, Superfluidity, Vortex, Condensed matter physics, Skyrmion, Condensed Matter - Quantum Gases, Condensed Matter - Mesoscale and Nanoscale Physics, Physics - Optics, Physical Sciences
Funded by
RCUK| Novel superfluid phenomena in semiconductor microcavities
Project
  • Funder: Research Council UK (RCUK)
  • Project Code: EP/I028900/2
  • Funding stream: EPSRC
,
EC| POLAFLOW
Project
POLAFLOW
Polariton condensates: from fundamental physics to quantum based devices
  • Funder: European Commission (EC)
  • Project Code: 308136
  • Funding stream: FP7 | SP2 | ERC
,
RCUK| Coherent quantum matter out of equilibrium - from fundamental physics towards applications
Project
  • Funder: Research Council UK (RCUK)
  • Project Code: EP/K003623/2
  • Funding stream: EPSRC
40 references, page 1 of 3

[1] Y. M. Shnir, Magnetic Monopoles (Springer-Verlag, Berlin Heidelberg, 2005).

[2] P. A. M. Dirac, Quantised singularities in the electromagnetic field, Proc. R. Soc. Lond. 133 (1931).

[3] G. E. Volovik, The Universe in a Helium Droplet (Oxford University Press, New York, 2003).

[4] C. Castelnovo, R. Moessner, and S. L. Sondhi, Magnetic monopoles in spin ice, Nature 451, 42 (2008). [OpenAIRE]

[5] D. J. P. Morris, D. A. Tennant, S. A. Grigera, B. Klemke, C. Castelnovo, R. Moessner, C. Czternasty, M. Meissner, K. C. Rule, J.-U. Hoffmann, K. Kiefer, S. Gerischer, D. Slobinsky, and R. S. Perry, Dirac strings and magnetic monopoles in the spin ice Dy2Ti2O7, Science 326, 411 (2009).

[6] I. Chuang, R. Durrer, N. Turok, and B. Yurke, Cosmology in the laboratory: Defect dynamics in liquid crystals, Science 251, 1336 (1991). [OpenAIRE]

[7] R. Hivet, H. Flayac, D. D. Solnyshkov, D. Tanese, T. Boulier, D. Andreoli, E. Giacobino, J. Bloch, A. Bramati, G. Malpuech, and A. Amo, Half-solitons in a polariton quantum fluid behave like magnetic monopoles, Nat. Phys. 8, 724 (2012).

[8] M. Ray, E. Ruokokoski, S. Kandel, M. Mo¨ tto¨ nen, and D. Hall, Observation of Dirac monopoles in a synthetic magnetic field, Nature 505, 657 (2014). [OpenAIRE]

[9] M. W. Ray, E. Ruokokoski, K. Tiurev, M. Mo¨ tto¨ nen, and D. S. Hall, Observation of isolated monopoles in a quantum field, Science 348, 544 (2015). [OpenAIRE]

[10] Z. Fang, N. Nagaosa, K. S. Takahashi, A. Asamitsu, R. Mathieu, T. Ogasawara, H. Yamada, M. Kawasaki, Y. Tokura, and K. Terakura, The anomalous Hall effect and magnetic monopoles in momentum space, Science 302, 92 (2003). [OpenAIRE]

[11] P. Milde, D. Ko¨ hler, J. Seidel, L. M. Eng, A. Bauer, A. Chacon, J. Kindervater, S. M u¨hlbauer, C. Pfleiderer, S. Buhrandt, C. Sch u¨tte, and A. Rosch, Unwinding of a skyrmion lattice by magnetic monopoles, Science 340, 1076 (2013).

[12] M. Toledo-Solano, M. E. Mora-Ramos, A. Figueroa, and Y. G. Rubo, Warping and interactions of vortices in excitonpolariton condensates, Phys. Rev. B 89, 035308 (2014).

[13] F. Manni, Y. Le´ger, Y. G. Rubo, R. Andre´, and B. Deveaud, Hyperbolic spin vortices and textures in exciton-polariton condensates, Nat. Commun. 4 (2013).

[14] L. Sadler, J. Higbie, S. Leslie, M. Vengalattore, and D. Stamper-Kurn, Spontaneous symmetry breaking in a quenched ferromagnetic spinor Bose-Einstein condensate, Nature 443, 312 (2006). [OpenAIRE]

[15] A. Amo, D. Sanvitto, F. P. Laussy, D. Ballarini, E. del Valle, M. D. Martin, A. Lemaˆıtre, J. Bloch, D. N. Krizhanovskii, M. S. Skolnick, C. Tejedor, and L. Vi n˜a, Collective fluid dynamics of a polariton condensate in a semiconductor microcavity. Nature 457, 291 (2009).

40 references, page 1 of 3
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue