Reducibility of Dupin submanifolds

Preprint, Other literature type English OPEN
Dajczer, Marcos; Florit, Luis A.; Tojeiro, Ruy;
(2005)
  • Publisher: University of Illinois at Urbana-Champaign, Department of Mathematics
  • Journal: issn: 0019-2082
  • Publisher copyright policies & self-archiving
  • Subject: 53C40 | 37K25 | 53B25 | Mathematics - Differential Geometry
    arxiv: Mathematics::Differential Geometry | Mathematics::Complex Variables | Mathematics::Symplectic Geometry

We introduce the notion of weak reduciblity for Dupin submanifolds with arbitrary codimension. We give a complete characterization of all weakly reducible Dupin submanifolds, as a consequence of a general result on a broader class of Euclidean submanifolds. As a main ap... View more
  • References (5)

    H. Reckziegel, Kru¨mmungsfl¨achen von isometrischen Immersionen in R¨aume Konstanter Kru¨mmung, Math. Ann. 223 (1976), 169-181.

    H. Reckziegel, Completeness of curvature surfaces of an isometric immersion, J. Diff. Geometry 14 (1979), 7-20.

    H. Reckziegel and M. Schaaf, De Rham decomposition of netted manifold, Result. Math. 35 (1999), 175-191.

    G. Thorbergsson, A survey in isoparametric hypersurfaces and their generalizations, Handbook of Differential Geometry Vol 1, Elsevier Science B. V. 2000, 963-995.

    S. T. Yau, Submanifolds with constant mean curvature I, Amer. J. Math. 96 (1974), 346-366.

  • Metrics
Share - Bookmark