publication . Article . Preprint . 2015

Using hybrid GPU/CPU kernel splitting to accelerate spherical convolutions

Franz Elsner; Benjamin WANDELT;
Open Access English
  • Published: 24 Mar 2015
  • Publisher: HAL CCSD
  • Country: France
Abstract
We present a general method for accelerating by more than an order of magnitude the convolution of pixelated functions on the sphere with a radially-symmetric kernel. Our method splits the kernel into a compact real-space component and a compact spherical harmonic space component. These components can then be convolved in parallel using an inexpensive commodity GPU and a CPU. We provide models for the computational cost of both real-space and Fourier space convolutions and an estimate for the approximation error. Using these models we can determine the optimum split that minimizes the wall clock time for the convolution while satisfying the desired error bounds....
Subjects
ACM Computing Classification System: ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION
free text keywords: Cosmology: theory, Methods: numerical, [ SDU.ASTR ] Sciences of the Universe [physics]/Astrophysics [astro-ph], Astrophysics - Cosmology and Nongalactic Astrophysics, Astrophysics - Instrumentation and Methods for Astrophysics, [SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph], Astronomy and Astrophysics, Computer Science Applications
Funded by
NSF| Collaborative Research: Simulation of Systematic Efffects in Interferometry for Studies of the Cosmic Microwave Background
Project
  • Funder: National Science Foundation (NSF)
  • Project Code: 0908902
  • Funding stream: Directorate for Mathematical & Physical Sciences | Division of Astronomical Sciences
,
NSF| Programs on Critical Problems in Physics, Astrophysics and Biophysics at the Aspen Center for Physics
Project
  • Funder: National Science Foundation (NSF)
  • Project Code: 1066293
  • Funding stream: Directorate for Mathematical & Physical Sciences | Division of Physics
,
EC| COSMICDAWN
Project
COSMICDAWN
Understanding the Origin of Cosmic Structure
  • Funder: European Commission (EC)
  • Project Code: 306478
  • Funding stream: FP7 | SP2 | ERC
40 references, page 1 of 3

Barsdell, B.R., Barnes, D.G., Fluke, C.J., 2010. Advanced Architectures for Astrophysical Supercomputing, in: Y. Mizumoto, K.- I. Morita, & M. Ohishi (Ed.), Astronomical Data Analysis Software and Systems XIX, p. 209. arXiv:1001.2048. [OpenAIRE]

Baumann, D., et al., 2009. Probing In ation with CMB Polarization. volume 1141. AIP. URL: http://adsabs.harvard.edu/abs/ 2009AIPC.1141...10B, doi:10.1063/1.3160885.

Brunner, R.J., Kindratenko, V.V., Myers, A.D., 2007. Developing and Deploying Advanced Algorithms to Novel Supercomputing Hardware. e-print arXiv: 0711.3414 arXiv:0711.3414. [OpenAIRE]

Efstathiou, G., 2007. E ects of destriping errors on cosmic microwave background polarization power spectra and pixel noise covariances. Mon. Not. R. Astron. Soc. 380, 1621. URL: http: //adsabs.harvard.edu/abs/2007MNRAS.380.1621E, doi:10.1111/ j.1365-2966.2007.12201.x.

Elsner, F., Wandelt, B.D., 2011. ARKCoS: artifact-suppressed accelerated radial kernel convolution on the sphere. Astron. & Astrophys. 532, A35. URL: http://adsabs.harvard.edu/abs/2011A&A. ..532A..35E, doi:10.1051/0004-6361/201116963. [OpenAIRE]

Fluke, C.J., Barnes, D.G., Barsdell, B.R., Hassan, A.H., 2011. Astrophysical Supercomputing with GPUs: Critical Decisions for Early Adopters. Publications of the Astronomical Society of Australia 28, 15. doi:10.1071/AS10019, arXiv:1008.4623.

Gheller, C., Leach, S., Ta oni, G., Vuerli, C., Pasian, F., 2007. Simulating the Planck Mission on a Distributed Computing Architecture: The DEISA and EGEE Experiences. Astronomical Data Analysis Software and Systems XVI ASP Conference Series 376. URL: http://adsabs.harvard.edu/abs/2007ASPC..376...61G. [OpenAIRE]

Gonzalez-Nuevo, J., Argueso, F., Lopez-Caniego, M., To olatti, L., Sanz, J.L., Vielva, P., Herranz, D., 2006. The Mexican hat wavelet family: application to point-source detection in cosmic microwave background maps. Mon. Not. R. Astron. Soc. 369, 1603. URL: http://adsabs.harvard.edu/abs/2006MNRAS.369.1603G, doi:10. 1111/j.1365-2966.2006.10442.x. [OpenAIRE]

Gorski, K.M., Hivon, E., Banday, A.J., Wandelt, B.D., Hansen, F.K., Reinecke, M., Bartelmann, M., 2005. HEALPix: A Framework for HighResolution Discretization and Fast Analysis of Data Distributed on the Sphere. ApJ 622, 759. URL: http://adsabs. harvard.edu/abs/2005ApJ...622..759G, doi:10.1086/427976. [OpenAIRE]

Greig, B., Bolton, J.S., Wyithe, J.S.B., 2011. Fast, large-volume, GPU-enabled simulations for the Ly forest: power spectrum forecasts for baryon acoustic oscillation experiments. Mon. Not. R. Astron. Soc. , 1539doi:10.1111/j.1365-2966.2011.19617.x, arXiv:1105.4747.

Hassan, A.H., Fluke, C.J., Barnes, D.G., 2011. Distributed GPU Volume Rendering of ASKAP Spectral Data Cubes, in: I. N. Evans, A. Accomazzi, D. J. Mink, & A. H. Rots (Ed.), Astronomical Data Analysis Software and Systems XX, p. 207. arXiv:1012.2909.

Hobson, M.P., Jones, A.W., Lasenby, A.N., 1999. Wavelet analysis and the detection of non-Gaussianity in the cosmic microwave background. Mon. Not. R. Astron. Soc. 309, 125. URL: http://adsabs.harvard.edu/abs/1999MNRAS.309..125H, doi:10. 1046/j.1365-8711.1999.02824.x.

Hupca, I.O., Falcou, ., Grigori, ., Stompor, ., 2010. Spherical harmonic transform with GPUs. eprint arXiv:1010.1260 URL: http://adsabs.harvard.edu/abs/2010arXiv1010.1260H.

Jonsson, P., Primack, J.R., 2010. Accelerating dust temperature calculations with graphics-processing units. New. Astron. 15, 509. doi:10.1016/j.newast.2009.12.008, arXiv:0907.3768. [OpenAIRE]

Komatsu, E., et al., 2011. SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE ( WMAP ) OBSERVATIONS: COSMOLOGICAL INTERPRETATION. Astrophys. J. Supp. 192, 18. URL: http://adsabs.harvard.edu/abs/2011ApJS. .192...18K, doi:10.1088/0067-0049/192/2/18.

40 references, page 1 of 3
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue