publication . Article . Preprint . 2014

Towards a fitting procedure to deeply virtual meson production - the next-to-leading order case

Müller, D.; Lautenschlager, Tobias; Passek-Kumerički, K.; Schäfer, Andreas;
Open Access English
  • Published: 24 Apr 2014
  • Publisher: Elsevier
Based on the collinear factorization approach, we present a comprehensive perturbative next-to-leading (NLO) analysis of deeply virtual meson production (DVMP). Our representation in conformal Mellin space can serve as basis for a global fitting procedure to access generalized parton distributions from experimental measurements of DVMP and deeply virtual Compton scattering (DVCS). We introduce a rather general formalism for the evaluation of conformal moments that can be developed further beyond the considered order. We also confirm previous diagrammatical findings in the pure singlet quark channel. Finally, we use the analytic properties of the hard scattering ...
arXiv: High Energy Physics::Experiment
free text keywords: Physics, 530 Physik, ddc:530, High Energy Physics - Phenomenology, High Energy Physics - Experiment, Nuclear Experiment, Nuclear and High Energy Physics, Quark, Parton, Scattering amplitude, Factorization, Radiative transfer, Compton scattering, Perturbation theory (quantum mechanics), Particle physics, Quantum electrodynamics, Conformal map
Funded by
MZOS| Fundamental interactions in elementary particle physics and cosmology
  • Funder: Ministry of Science, Education and Sports of the Republic of Croatia (MSES) (MZOS)
  • Project Code: 098-0982930-2864
Study of Strongly Interacting Matter
  • Funder: European Commission (EC)
  • Project Code: 283286
  • Funding stream: FP7 | SP4 | INFRA
102 references, page 1 of 7

[23] L. Frankfurt, W. Koepf, M. Strikman, Phys. Rev. D 57 (1998) 512, arXiv:hep-ph/9702216.

[24] L. Mankiewicz, G. Piller, T. Weigl, Eur. Phys. J. C 5 (1998) 119, arXiv:hep-ph/9711227.

[25] L. Mankiewicz, G. Piller, T. Weigl, Phys. Rev. D 59 (1999) 017501, arXiv:hep-ph/9712508.

[26] L. Mankiewicz, G. Piller, A. Radyushkin, Eur. Phys. J. C 10 (1999) 307, arXiv:hep-ph/9812467.

[27] L.L. Frankfurt, M.V. Polyakov, M. Strikman, M. Vanderhaeghen, Phys. Rev. Lett. 84 (2000) 2589, arXiv:hep-ph/ 9911381.

[28] L.L. Frankfurt, P.V. Pobylitsa, M.V. Polyakov, M. Strikman, Phys. Rev. D 60 (1999) 0140010, arXiv:hep-ph/ 9901429.

[29] J. Blumlein, J. Eilers, B. Geyer, D. Robaschik, Phys. Rev. D 65 (2002) 054029, arXiv:hep-ph/0108095.

[30] P.A.M. Guichon, L. Mossé, M. Vanderhaeghen, Phys. Rev. D 68 (2003) 034018, arXiv:hep-ph/0305231.

[31] A.V. Belitsky, D. Müller, Phys. Lett. B 513 (2001) 349, arXiv:hep-ph/0105046.

[32] D.Y. Ivanov, L. Szymanowski, G. Krasnikov, JETP Lett. 80 (2004) 226, arXiv:hep-ph/0407207, Pis'ma Zh. Eksp. Teor. Fiz 80 (2004) 255.

[33] A.V. Belitsky, D. Müller, Phys. Lett. B 417 (1998) 129, arXiv:hep-ph/9709379.

[34] L. Mankiewicz, G. Piller, E. Stein, M. Vänttinen, T. Weigl, Phys. Lett. B 425 (1998) 186, arXiv:hep-ph/9712251.

[35] X. Ji, J. Osborne, Phys. Rev. D 57 (1998) 1337, arXiv:hep-ph/9707254.

[36] X. Ji, J. Osborne, Phys. Rev. D 58 (1998) 094018, arXiv:hep-ph/9801260.

[37] B. Pire, L. Szymanowski, J. Wagner, Phys. Rev. D 83 (2011) 034009, arXiv:1101.0555.

102 references, page 1 of 7
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue