publication . Article . Preprint . 2013

minimal decaying dark matter and the lhc

Arcadi, Giorgio; Covi, Laura;
Open Access
  • Published: 05 Aug 2013 Journal: Journal of Cosmology and Astroparticle Physics, volume 2,013, pages 5-5 (eissn: 1475-7516, Copyright policy)
  • Publisher: IOP Publishing
Abstract
We consider a minimal Dark Matter model with just two additional states, a Dark Matter Majorana fermion and a colored or electroweakly charged scalar, without introducing any symmetry to stabilize the DM state. We identify the parameter region where an indirect DM signal would be within the reach of future observations and the DM relic density generated fits the observations. We find in this way two possible regions in the parameter space, corresponding to a FIMP/SuperWIMP or a WIMP DM. We point out the different collider signals of this scenario and how it will be possible to measure the different couplings in case of a combined detection.
Subjects
free text keywords: Astronomy and Astrophysics, Physics, Light dark matter, WIMP, Cosmology, Scalar (mathematics), Scalar field dark matter, Particle physics, Parameter space, Majorana fermion, Dark matter, High Energy Physics - Phenomenology
Funded by
EC| INVISIBLES
Project
INVISIBLES
INVISIBLES
  • Funder: European Commission (EC)
  • Project Code: 289442
  • Funding stream: FP7 | SP3 | PEOPLE
79 references, page 1 of 6

[1] G. Bertone, D. Hooper, and J. Silk, “Particle dark matter: Evidence, candidates and constraints,” Phys.Rept., vol. 405, pp. 279-390, 2005, hep-ph/0404175.

[2] G. Kane and S. Watson, “Dark Matter and LHC: What is the Connection?,” Mod.Phys.Lett., vol. A23, pp. 2103-2123, 2008, 0807.2244.

[3] H. Baer, “TASI 2008 lectures on Collider Signals. II. Missing E(T) signatures and the dark matter connection,” pp. 211-258, 2009, 0901.4732.

[4] M. Ackermann et al., “Constraining Dark Matter Models from a Combined Analysis of Milky Way Satellites with the Fermi Large Area Telescope,” Phys.Rev.Lett., vol. 107, p. 241302, 2011, 1108.3546.

[5] G. Zaharijas, J. Conrad, A. Cuoco, and Z. Yang, “Fermi-LAT measurement of the diffuse gamma-ray emission and constraints on the Galactic Dark Matter signal,” 2012, 1212.6755. [OpenAIRE]

[6] A. Morselli, “Fermi large area telescope results: The sky at high energies and the quest for dark matter signals,” Acta Phys.Polon., vol. B43, pp. 2187-2198, 2012. [OpenAIRE]

[7] M. Aguilar et al., “First Result from the Alpha Magnetic Spectrometer on the International Space Station: Precision Measurement of the Positron Fraction in Primary Cosmic Rays of 0.5 − 350 GeV ,” Phys.Rev.Lett., vol. 110, no. 14, p. 141102, 2013.

[8] A. Abramowski et al., “Search for Dark Matter Annihilation Signals from the Fornax Galaxy Cluster with H.E.S.S,” Astrophys.J., vol. 750, p. 123, 2012, 1202.5494.

[9] A. Abramowski et al., “H.E.S.S. observations of the globular clusters NGC 6388 and M 15 and search for a Dark Matter signal,” Astrophys.J., vol. 735, p. 12, 2011, 1104.2548. [OpenAIRE]

[10] A. Abramowski et al., “H.E.S.S. constraints on Dark Matter annihilations towards the Sculptor and Carina Dwarf Galaxies,” Astropart.Phys., vol. 34, pp. 608-616, 2011, 1012.5602.

[11] J. Aleksic et al., “Searches for Dark Matter annihilation signatures in the Segue 1 satellite galaxy with the MAGIC-I telescope,” JCAP, vol. 1106, p. 035, 2011, 1103.0477.

[12] J. Aleksic et al., “MAGIC Gamma-Ray Telescope Observation of the Perseus Cluster of Galaxies: Implications for Cosmic Rays, Dark Matter and NGC 1275,” Astrophys.J., vol. 710, pp. 634-647, 2010, 0909.3267.

[13] E. Aprile et al., “Dark Matter Results from 225 Live Days of XENON100 Data,” Phys.Rev.Lett., vol. 109, p. 181301, 2012, 1207.5988.

[14] E. Aprile et al., “Limits on spin-dependent WIMP-nucleon cross sections from 225 live days of XENON100 data,” 2013, 1301.6620.

[15] T. Asaka, S. Blanchet, and M. Shaposhnikov, “The nuMSM, dark matter and neutrino masses,” Phys.Lett., vol. B631, pp. 151-156, 2005, hep-ph/0503065.

79 references, page 1 of 6
Abstract
We consider a minimal Dark Matter model with just two additional states, a Dark Matter Majorana fermion and a colored or electroweakly charged scalar, without introducing any symmetry to stabilize the DM state. We identify the parameter region where an indirect DM signal would be within the reach of future observations and the DM relic density generated fits the observations. We find in this way two possible regions in the parameter space, corresponding to a FIMP/SuperWIMP or a WIMP DM. We point out the different collider signals of this scenario and how it will be possible to measure the different couplings in case of a combined detection.
Subjects
free text keywords: Astronomy and Astrophysics, Physics, Light dark matter, WIMP, Cosmology, Scalar (mathematics), Scalar field dark matter, Particle physics, Parameter space, Majorana fermion, Dark matter, High Energy Physics - Phenomenology
Funded by
EC| INVISIBLES
Project
INVISIBLES
INVISIBLES
  • Funder: European Commission (EC)
  • Project Code: 289442
  • Funding stream: FP7 | SP3 | PEOPLE
79 references, page 1 of 6

[1] G. Bertone, D. Hooper, and J. Silk, “Particle dark matter: Evidence, candidates and constraints,” Phys.Rept., vol. 405, pp. 279-390, 2005, hep-ph/0404175.

[2] G. Kane and S. Watson, “Dark Matter and LHC: What is the Connection?,” Mod.Phys.Lett., vol. A23, pp. 2103-2123, 2008, 0807.2244.

[3] H. Baer, “TASI 2008 lectures on Collider Signals. II. Missing E(T) signatures and the dark matter connection,” pp. 211-258, 2009, 0901.4732.

[4] M. Ackermann et al., “Constraining Dark Matter Models from a Combined Analysis of Milky Way Satellites with the Fermi Large Area Telescope,” Phys.Rev.Lett., vol. 107, p. 241302, 2011, 1108.3546.

[5] G. Zaharijas, J. Conrad, A. Cuoco, and Z. Yang, “Fermi-LAT measurement of the diffuse gamma-ray emission and constraints on the Galactic Dark Matter signal,” 2012, 1212.6755. [OpenAIRE]

[6] A. Morselli, “Fermi large area telescope results: The sky at high energies and the quest for dark matter signals,” Acta Phys.Polon., vol. B43, pp. 2187-2198, 2012. [OpenAIRE]

[7] M. Aguilar et al., “First Result from the Alpha Magnetic Spectrometer on the International Space Station: Precision Measurement of the Positron Fraction in Primary Cosmic Rays of 0.5 − 350 GeV ,” Phys.Rev.Lett., vol. 110, no. 14, p. 141102, 2013.

[8] A. Abramowski et al., “Search for Dark Matter Annihilation Signals from the Fornax Galaxy Cluster with H.E.S.S,” Astrophys.J., vol. 750, p. 123, 2012, 1202.5494.

[9] A. Abramowski et al., “H.E.S.S. observations of the globular clusters NGC 6388 and M 15 and search for a Dark Matter signal,” Astrophys.J., vol. 735, p. 12, 2011, 1104.2548. [OpenAIRE]

[10] A. Abramowski et al., “H.E.S.S. constraints on Dark Matter annihilations towards the Sculptor and Carina Dwarf Galaxies,” Astropart.Phys., vol. 34, pp. 608-616, 2011, 1012.5602.

[11] J. Aleksic et al., “Searches for Dark Matter annihilation signatures in the Segue 1 satellite galaxy with the MAGIC-I telescope,” JCAP, vol. 1106, p. 035, 2011, 1103.0477.

[12] J. Aleksic et al., “MAGIC Gamma-Ray Telescope Observation of the Perseus Cluster of Galaxies: Implications for Cosmic Rays, Dark Matter and NGC 1275,” Astrophys.J., vol. 710, pp. 634-647, 2010, 0909.3267.

[13] E. Aprile et al., “Dark Matter Results from 225 Live Days of XENON100 Data,” Phys.Rev.Lett., vol. 109, p. 181301, 2012, 1207.5988.

[14] E. Aprile et al., “Limits on spin-dependent WIMP-nucleon cross sections from 225 live days of XENON100 data,” 2013, 1301.6620.

[15] T. Asaka, S. Blanchet, and M. Shaposhnikov, “The nuMSM, dark matter and neutrino masses,” Phys.Lett., vol. B631, pp. 151-156, 2005, hep-ph/0503065.

79 references, page 1 of 6
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue