publication . Preprint . Article . Other literature type . 2014

Field-Reversed Bubble in Deep Plasma Channels for High-Quality Electron Acceleration

Alexander Pukhov; Jansen, O.; Tueckmantel, T.; Thomas, J.; Kostyukov, I. Yu;
Open Access English
  • Published: 01 Aug 2014
Abstract
We study hollow plasma channels with smooth boundaries for laser-driven electron acceleration in the bubble regime. Contrary to the uniform plasma case, the laser forms no optical shock and no etching at the front. This increases the effective bubble phase velocity and energy gain. The longitudinal field has a plateau that allows for mono-energetic acceleration. We observe as low as 10^{-3} r.m.s. relative witness beam energy uncertainty in each cross-section and 0.3% total energy spread. By varying plasma density profile inside a deep channel, the bubble fields can be adjusted to balance the laser depletion and dephasing lengths. Bubble scaling laws for the dee...
Subjects
free text keywords: physics.plasm-ph, Accelerators and Storage Rings, Novel Acceleration Techniques (ANAC2) [13], Coordination and Communication [13.1], Physics - Plasma Physics
Funded by
EC| EUCARD-2
Project
EUCARD-2
Enhanced European Coordination for Accelerator Research & Development
  • Funder: European Commission (EC)
  • Project Code: 312453
  • Funding stream: FP7 | SP4 | INFRA

This work has been supported by the Deutsche Forschungsgemeinschaft via GRK 1203 and SFB TR 18, by EU FP7 project EUCARD-2 and by the Government of the Russian Federation (Project No. 14.B25.31.0008) and by the Russian Foundation for Basic Research (Grants No. 13-02-00886, 13-02-97025). [1] E. Esarey, C. B. Schroeder, and W. P. Leemans, Rev.

Mod. Phys. 81, 1229 (2009) [2] C. Joshi and A. Caldwell, “Plasma Accelerators,” Hand-

(2013), 12-1. [3] A. Pukhov, J. Meyer-ter-Vehn, Applied Physics B 74,

355 (2002) [4] I. Kostyukov, A. Pukhov, S. Kiselev, Phys. Plasmas 11,

5256 (2004) [5] V. Malka Laser Plasma Accelerators, in Laser-Plasma In- [OpenAIRE]

281-301 (2013) [6] W. Lu et al. PRSTAB 10, 061301 (2007) [7] W. Lu et al., Phys. Rev. Lett. 96, 165002 (2006). [8] S. Gordienko, A. Pukhov Physics of Plasmas 12, 043109

(2004). [9] A. Pukhov, S. Gordienko, Phil Tr. R. Soc. A, 364, 623

(2006). [10] O. Jansen, T. Tückmantel, and A. Pukhov, Eur. Phys. [OpenAIRE]

J. Special Topics 223, 1017-1030 (2014) [11] C. B. Schroeder, E. Esarey, C. Benedetti, W. Leemans

Phys.Plasmas 20, 080701 (2013) [12] J. Faure et al., Phys. Rev. Lett. 95, 205003 (2005). [13] Y. Katzir et al. Appl. Phys. Lett. 95, 031101 (2009). [14] P. Sprangle, E. Esarey, and A. Ting, Phys. Rev. Lett. 64,

2011 (1990) [15] D. H. Whittum, Phys. Plasmas, 4, 1154 (1997) [16] P. Mora and Th. M. Antonsen Jr., Phys. Plasmas 4,

(1997) [17] J.-L. Vay, Phys. Rev. Lett. 98, 130405 (2007)

Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue