Share  Bookmark

 Download from



... 
 Funded by

[BBJ+08] D. Bernstein, P. Birkner, M. Joye, T. Lange, and C. Peters. “Twisted edwards curves”. In: Progress in CryptologyAFRICACRYPT 2008 (2008), pp. 389405 (cit. on p. 2).
[Ber06] D. J. Bernstein. “Differential addition chains”. 2006. url: http://cr.yp.to/ecdh/ diffchain20060219.pdf (cit. on pp. 5, 6).
[BCL+14] D. J. Bernstein, C. Chuengsatiansup, T. Lange, and P. Schwabe. “Kummer strikes back: new DH speed records”. 2014. eprint: 2014/134.pdf (cit. on p. 2).
[BL04] C. Birkenhake and H. Lange. Complex abelian varieties. Second. Vol. 302. Grundlehren der Mathematischen Wissenschaften [Fundament al Principles of Mathematical Sciences]. Berlin: SpringerVerlag, 2004, pp. xii+635. isbn: 3540204881 (cit. on pp. 7, 8, 10, 15).
[BCH+13] J. W. Bos, C. Costello, H. Hisil, and K. Lauter. “Fast cryptography in genus 2”. In: Advances in CryptologyEUROCRYPT 2013. Springer, 2013, pp. 194210 (cit. on p. 2).
[Bro06] D. R. Brown. “Multidimensional Montgomery ladders for elliptic curves”. 2006. eprint: 2006/220 (cit. on pp. 6, 16).
[Can87] D. G. Cantor. “Computing in the Jacobian of a hyperelliptic curve”. In: Math. Comp. 48.177 (1987), pp. 95101. issn: 00255718 (cit. on p. 1).
[Cos11] R. Cosset. “Application des fonctions thêta à la cryptographie sur courbes hyperelliptiques”. PhD thesis. 2011 (cit. on p. 2).
[CR13] R. Cosset and D. Robert. “An algorithm for computing (`; `)isogenies in polynomial time on Jacobians of hyperelliptic curves of genus 2”. Accepted for publication in Mathematics of computation. 2013. url: http://www.normalesup.org/~robert/pro/publications/ articles/niveau.pdf. HAL: hal00578991, eprint: 2011/143 (cit. on pp. 2, 12, 15).
[Dup06] R. Dupont. “Moyenne arithmeticogeometrique, suites de Borchardt et applications”. In: These de doctorat, Ecole polytechnique, Palaiseau (2006) (cit. on p. 11).