Semiparametric density estimation by local L_2-fitting

Preprint, Other literature type English OPEN
Naito, Kanta;

This article examines density estimation by combining a parametric approach with a nonparametric factor. The plug-in parametric estimator is seen as a crude estimator of the true density and is adjusted by a nonparametric factor. The nonparametric factor is derived by a... View more
  • References (18)
    18 references, page 1 of 2

    (g0(x)1−αf (x))′′ Proof of Theorem 2 (continued). By applying Lemmas 4 and 5 to

    (9.2) and rearranging, the MSE expression of Ncg is obtained. This completes

    Azzalini, A. (1985). A class of distributions which includes the normal ones. Scand. J. Statist. 12 171-178. MR808153

    Copas, J. B. (1995). Local likelihood based on kernel censoring. J. Roy. Statist. Soc. Ser. B 57 221-235. MR1325387

    Eguchi, S. and Copas, J. B. (1998). A class of local likelihood methods and nearparametric asymptotics. J. R. Stat. Soc. Ser. B Stat. Methodol. 60 709-724. MR1649531

    Hall, P. and Marron, J. S. (1987). Estimation of integrated squared density derivatives. Statist. Probab. Lett. 6 109-115. MR907270

    Ha¨rdle, W., Marron, J. S. and Wand, M. P. (1990). Bandwidth choice for density derivatives. J. Roy. Statist. Soc. Ser. B 52 223-232. MR1049312

    Hjort, N. L. and Glad, I. K. (1995). Nonparametric density estimation with a parametric start. Ann. Statist. 23 882-904. MR1345205

    Hjort, N. L. and Jones, M. C. (1996). Locally parametric nonparametric density estimation. Ann. Statist. 24 1619-1647. MR1416653

    Izenman, A. J. (1991). Recent developments in nonparametric density estimation. J. Amer. Statist. Assoc. 86 205-224. MR1137112

  • Metrics
Share - Bookmark