Do the gravitational corrections to the beta functions of the quartic and Yukawa couplings have an intrinsic physical meaning?

Article, Preprint English OPEN
Gonzalez-Martin, S.; Martin, C.P.;
(2017)
  • Publisher: Elsevier
  • Journal: Physics letters B (issn: 0370-2693)
  • Related identifiers: doi: 10.1016/j.physletb.2017.09.011
  • Subject: General Relativity and Quantum Cosmology | Gravitation | Física-Modelos matemáticos | Renormalization | Beta function | High Energy Physics - Theory

We study the beta functions of the quartic and Yukawa couplings of General Relativity and Unimodular Gravity coupled to the $\lambda\phi^4$ and Yukawa theories with masses. We show that the General Relativity corrections to those beta functions as obtained from the 1PI ... View more
  • References (20)
    20 references, page 1 of 2

    [1] G. 't Hooft, M.J.G. Veltman, One loop divergencies in the theory of gravitation, Ann. Inst. Henri Poincaré A, Phys. Théor. 20 (1974) 69.

    [2] S. Deser, P. van Nieuwenhuizen, Nonrenormalizability of the quantized Einstein-Maxwell system, Phys. Rev. Lett. 32 (1974) 245, http://dx.doi.org/ 10.1103/PhysRevLett.32.245.

    [3] S. Deser, P. van Nieuwenhuizen, One loop divergences of quantized EinsteinMaxwell fields, Phys. Rev. D 10 (1974) 401, http://dx.doi.org/10.1103/PhysRevD. 10.401.

    [4] S. Deser, P. van Nieuwenhuizen, Nonrenormalizability of the quantized Dirac-Einstein system, Phys. Rev. D 10 (1974) 411, http://dx.doi.org/10.1103/ PhysRevD.10.411.

    [5] S. Deser, H.S. Tsao, P. van Nieuwenhuizen, Nonrenormalizability of Einstein Yang-Mills interactions at the one loop level, Phys. Lett. B 50 (1974) 491, http://dx.doi.org/10.1016/0370-2693(74)90268-8.

    [6] J.F. Donoghue, Leading quantum correction to the Newtonian potential, Phys. Rev. Lett. 72 (1994) 2996, http://dx.doi.org/10.1103/PhysRevLett.72.2996, arXiv:gr-qc/9310024.

    [7] J.F. Donoghue, General relativity as an effective field theory: the leading quantum corrections, Phys. Rev. D 50 (1994) 3874, http://dx.doi.org/10.1103/ PhysRevD.50.3874, arXiv:gr-qc/9405057.

    [8] G.F.R. Ellis, H. van Elst, J. Murugan, J.P. Uzan, On the trace-free Einstein equations as a viable alternative to general relativity, Class. Quantum Gravity 28 (2011) 225007, http://dx.doi.org/10.1088/0264-9381/28/22/225007, arXiv:1008. 1196 [gr-qc].

    [9] W.G. Unruh, A unimodular theory of canonical quantum gravity, Phys. Rev. D 40 (1989) 1048, http://dx.doi.org/10.1103/PhysRevD.40.1048.

    [10] E. Alvarez, S. Gonzalez-Martin, M. Herrero-Valea, C.P. Martin, Quantum corrections to unimodular gravity, J. High Energy Phys. 1508 (2015) 078, http://dx. doi.org/10.1007/JHEP08(2015)078, arXiv:1505.01995 [hep-th].

  • Metrics
    No metrics available
Share - Bookmark