Do the gravitational corrections to the beta functions of the quartic and Yukawa couplings have an intrinsic physical meaning?

Article, Preprint English OPEN
S. Gonzalez-Martin; C.P. Martin;
(2017)

We study the beta functions of the quartic and Yukawa couplings of General Relativity and Unimodular Gravity coupled to the λϕ4 and Yukawa theories with masses. We show that the General Relativity corrections to those beta functions as obtained from the 1PI functional b... View more
  • References (20)
    20 references, page 1 of 2

    [1] G. 't Hooft, M.J.G. Veltman, One loop divergencies in the theory of gravitation, Ann. Inst. Henri Poincaré A, Phys. Théor. 20 (1974) 69.

    [2] S. Deser, P. van Nieuwenhuizen, Nonrenormalizability of the quantized Einstein-Maxwell system, Phys. Rev. Lett. 32 (1974) 245, http://dx.doi.org/ 10.1103/PhysRevLett.32.245.

    [3] S. Deser, P. van Nieuwenhuizen, One loop divergences of quantized EinsteinMaxwell fields, Phys. Rev. D 10 (1974) 401, http://dx.doi.org/10.1103/PhysRevD. 10.401.

    [4] S. Deser, P. van Nieuwenhuizen, Nonrenormalizability of the quantized Dirac-Einstein system, Phys. Rev. D 10 (1974) 411, http://dx.doi.org/10.1103/ PhysRevD.10.411.

    [5] S. Deser, H.S. Tsao, P. van Nieuwenhuizen, Nonrenormalizability of Einstein Yang-Mills interactions at the one loop level, Phys. Lett. B 50 (1974) 491, http://dx.doi.org/10.1016/0370-2693(74)90268-8.

    [6] J.F. Donoghue, Leading quantum correction to the Newtonian potential, Phys. Rev. Lett. 72 (1994) 2996, http://dx.doi.org/10.1103/PhysRevLett.72.2996, arXiv:gr-qc/9310024.

    [7] J.F. Donoghue, General relativity as an effective field theory: the leading quantum corrections, Phys. Rev. D 50 (1994) 3874, http://dx.doi.org/10.1103/ PhysRevD.50.3874, arXiv:gr-qc/9405057.

    [8] G.F.R. Ellis, H. van Elst, J. Murugan, J.P. Uzan, On the trace-free Einstein equations as a viable alternative to general relativity, Class. Quantum Gravity 28 (2011) 225007, http://dx.doi.org/10.1088/0264-9381/28/22/225007, arXiv:1008. 1196 [gr-qc].

    [9] W.G. Unruh, A unimodular theory of canonical quantum gravity, Phys. Rev. D 40 (1989) 1048, http://dx.doi.org/10.1103/PhysRevD.40.1048.

    [10] E. Alvarez, S. Gonzalez-Martin, M. Herrero-Valea, C.P. Martin, Quantum corrections to unimodular gravity, J. High Energy Phys. 1508 (2015) 078, http://dx. doi.org/10.1007/JHEP08(2015)078, arXiv:1505.01995 [hep-th].

  • Related Organizations (3)
  • Metrics
Share - Bookmark