publication . Article . Other literature type . 2019

Automatic Peccei–Quinn symmetry

Gavela, M. B.; Ibe, M.; Quilez, P.; Yanagida, T. T.;
Open Access English
  • Published: 01 Jun 2019 Journal: European Physical Journal C: Particles and Fields (issn: 1434-6044, eissn: 1434-6052, Copyright policy)
  • Publisher: SpringerOpen
  • Country: Spain
We present a dynamical (composite) axion model where the Peccei–Quinn (PQ) symmetry arises automatically as a consequence of chirality and gauge symmetry. The Standard Model is simply extended by a confining and chiral SU(5) gauge symmetry. The PQ symmetry coincides with a B- L symmetry of the exotic sector. The theory is protected by construction from quantum gravitational corrections stemming from operators with mass dimension lower than nine This project has received support from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant agreements no. 690575 (RISE InvisiblesPlus) and no. 674896 (ITN ELUSIVES). ...
free text keywords: Peccei–Quinn (PQ) symmetry, Dynamical axion model, Top physics, Física, Astrophysics, QB460-466, Nuclear and particle physics. Atomic energy. Radioactivity, QC770-798, Physics and Astronomy (miscellaneous), Engineering (miscellaneous), Axion, Theoretical physics, Quantum, Particle physics, Gravitation, Operator (computer programming), Standard Model, Gauge symmetry, Physics
Funded by
The Elusives Enterprise: Asymmetries of the Invisible Universe
  • Funder: European Commission (EC)
  • Project Code: 674896
  • Funding stream: H2020 | MSCA-ITN-ETN
EC| InvisiblesPlus
  • Funder: European Commission (EC)
  • Project Code: 690575
  • Funding stream: H2020 | MSCA-RISE
71 references, page 1 of 5

1. C.A. Baker et al., An improved experimental limit on the electric dipole moment of the neutron. Phys. Rev. Lett. 97, 131801 (2006). arXiv:hep-ex/0602020 [hep-ex]

2. J. Engel, M.J. Ramsey-Musolf, U. van Kolck, Electric dipole moments of nucleons, nuclei, and atoms: the Standard Model and beyond. Prog. Part. Nucl. Phys. 71, 21-74 (2013). arXiv:1303.2371 [nucl-th]

3. R.D. Peccei, H.R. Quinn, CP conservation in the presence of instantons. Phys. Rev. Lett. 38, 1440-1443 (1977). [328(1977)] [OpenAIRE]

4. H. Georgi, I.N. McArthur, INSTANTONS AND THE mu QUARK MASS. Preprint.

5. M. Dine, P. Draper, G. Festuccia, Instanton effects in three flavor QCD. Phys. Rev. D 92(5), 054004 (2015). arXiv:1410.8505 [hepph]

6. K. Choi, C.W. Kim, W.K. Sze, Mass renormalization by instantons and the strong CP problem. Phys. Rev. Lett. 61, 794 (1988) [OpenAIRE]

7. D.B. Kaplan, A.V. Manohar, Current mass ratios of the light quarks. Phys. Rev. Lett. 56, 2004 (1986) [OpenAIRE]

8. J. Frison, R. Kitano, N. Yamada, N f = 1 + 2 mass dependence of the topological susceptibility. PoS LATTICE2016, 323 (2016). arXiv:1611.07150 [hep-lat]

9. J. Frison, R. Kitano, N. Yamada, Topological susceptibility with a single light quark flavour. EPJ Web Conf. 175, 14017 (2018). arXiv:1710.06643 [hep-lat]

10. S. Aoki et al., Review of lattice results concerning low-energy particle physics. Eur. Phys. J. C 77(2), 112 (2017). arXiv:1607.00299 [hep-lat]

11. W.A. Bardeen, Instanton Triggered Chiral Symmetry Breaking, the U(1) Problem and a Possible Solution to the Strong CP Problem. arXiv:1812.06041 [hep-ph]

12. K. Choi, J.E. Kim, Dynamical axion. Phys. Rev. D 32, 1828 (1985)

13. S. Weinberg, Implications of dynamical symmetry breaking. Phys. Rev. D 13, 974-996 (1976). [Addendum: Phys. Rev.D19,1277(1979)]

14. L. Susskind, Dynamics of spontaneous symmetry breaking in the Weinberg-Salam theory. Phys. Rev. D 20, 2619-2625 (1979)

15. S. Dimopoulos, J. Preskill, Massless composites with massive constituents. Nucl. Phys. B 199, 206-222 (1982)

71 references, page 1 of 5
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue