Effect of compressibility on the global stability of axisymmetric wake flows

Article English OPEN
Meliga, Philippe; Sipp, D.; Chomaz, Jean-Marc;
(2010)
  • Publisher: Cambridge University Press (CUP)
  • Related identifiers: doi: 10.1017/s002211201000279x
  • Subject: [ SPI.MECA.MEFL ] Engineering Sciences [physics]/Mechanics [physics.med-ph]/Fluids mechanics [physics.class-ph] | [SPI.MECA.MEFL]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Fluids mechanics [physics.class-ph] | [ PHYS.MECA.MEFL ] Physics [physics]/Mechanics [physics]/Mechanics of the fluids [physics.class-ph] | [PHYS.MECA.MEFL]Physics [physics]/Mechanics [physics]/Mechanics of the fluids [physics.class-ph]
    arxiv: Physics::Fluid Dynamics

International audience; We study the linear dynamics of global eigenmodes in compressible axisymmetric wake flows, up to the high subsonic regime. We consider both an afterbody flow at zero angle of attack and a sphere, and find that the sequence of bifurcations destabi... View more
  • References (54)
    54 references, page 1 of 6

    Achenbach, E. 1972 Experiments on the flow past spheres at very high Reynolds numbers. J. Fluid Mech. 54, 565-575.

    Achenbach, E. 1974 Vortex shedding from spheres. J. Fluid Mech. 62, 209-221.

    Barkley, D., Gomes, M. G. M. & Henderson, R. D. 2002 Three-dimensional instability in flow over a backward-facing step. J. Fluid Mech. 473, 167-190.

    Bottaro, A., Corbett, P. & Luchini, P. 2003 The effect of base flow variation on flow stability. J. Fluid Mech. 476, 293-302.

    Bouhadji, A. & Braza, M. 2003 Physical analysis by numerical simulation of organised modes and shock-vortex interaction in transonic flows around an aerofoil. Part 1. Mach number effect. J. Comput. Fluids 32, 1233-1260.

    Bre`s, G. A. & Colonius, T. 2008 Three-dimensional instabilities in compressible flow over open cavities. J. Fluid Mech. 599, 309-339.

    Chomaz, J.-M. 2005 Global instabilities in spatially developing flows: non-normality and nonlinearity. Annu. Rev. Fluid. Mech. 37, 357-392.

    Colonius, T. 2004 Modeling artificial boundary conditions for compressible flow. Annu. Rev. Fluid Mech. 36, 315-345.

    Corbett, P. & Bottaro, A. 2000 Optimal perturbations for boundary layers subject to streamwise pressure gradient. Phys. Fluids 12, 120-130.

    Corbett, P. & Bottaro, A. 2001 Optimal control of nonmodal disturbances in boundary layers. Theor. Comput. Fluid Dyn. 15, 65-81.

  • Metrics
Share - Bookmark