publication . Article . Preprint . 2014

Linear confinement in momentum space: singularity-free bound-state equations

Leitão, Sofia; Stadler, Alfred; Peña, M. T.; Biernat, Elmar P.;
Open Access
  • Published: 08 Aug 2014 Journal: Physical Review D, volume 90 (issn: 1550-7998, eissn: 1550-2368, Copyright policy)
  • Publisher: American Physical Society (APS)
Abstract
Relativistic equations of Bethe-Salpeter type for hadron structure are most conveniently formulated in momentum space. The presence of confining interactions causes complications because the corresponding kernels are singular. This occurs not only in the relativistic case but also in the nonrelativistic Schr\"odinger equation where this problem can be studied more easily. For the linear confining interaction the singularity reduces to one of Cauchy principal value form. Although this singularity is integrable, it still makes accurate numerical solutions difficult. We show that this principal value singularity can be eliminated by means of a subtraction method. T...
Subjects
free text keywords: Nuclear and High Energy Physics, Position and momentum space, Integrable system, Quantum electrodynamics, Physics, Singularity, Cauchy principal value, Bethe–Salpeter equation, Hadron, Bound state, Schrödinger equation, symbols.namesake, symbols, High Energy Physics - Phenomenology, Nuclear Theory
Funded by
EC| HADRONPHYSICS3
Project
HADRONPHYSICS3
Study of Strongly Interacting Matter
  • Funder: European Commission (EC)
  • Project Code: 283286
  • Funding stream: FP7 | SP4 | INFRA
,
FCT| PTDC/FIS/113940/2009
Project
PTDC/FIS/113940/2009
Hadron structure with relativistic models
  • Funder: Fundação para a Ciência e a Tecnologia, I.P. (FCT)
  • Project Code: 113940
  • Funding stream: 3599-PPCDT
33 references, page 1 of 3

2wℓ′−1(y) #

[1] E. Eichten et al., Phys. Rev. Lett. 34, 369 (1975).

[2] E. Eichten, K. Gottfried, T. Kinoshita, K. D. Lane, and T. M. Yan, Phys. Rev. D 17, 3090 (1978).

[3] E. Eichten, K. Gottfried, T. Kinoshita, K. D. Lane, and T. M. Yan, Phys. Rev. D 21, 203 (1980).

[4] S. Godfrey and N. Isgur, Phys. Rev. D 32, 189 (1985).

[5] E. P. Biernat, F. Gross, M. T. Pen˜a, and A. Stadler, Phys. Rev. D 89, 016005 (2014).

[6] E. P. Biernat, F. Gross, M. T. Pen˜a, and A. Stadler, Phys. Rev. D 89, 016006 (2014).

[7] F. Gross and J. Milana, Phys. Rev. D 43, 2401 (1991).

[8] F. Gross and J. Milana, Phys. Rev. D 45, 969 (1992).

[9] F. Gross and J. Milana, Phys. Rev. D 50, 3332 (1994).

[10] C. Savkli and F. Gross, Phys. Rev. C 63, 035208 (2001), hep-ph/9911319.

[11] F. Gross, Phys. Rev. 186, 1448 (1969).

[12] F. Gross, Phys. Rev. C 26, 2203 (1982).

[13] F. Gross, Phys. Rev. C 26, 2226 (1982).

[14] A. Stadler and F. Gross, Few-Body Syst. 49, 91 (2011).

33 references, page 1 of 3
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue