publication . Article . 2012

Computational model of neuron-astrocyte interactions during focal seizure generation

Reato, Davide; Cammarota, Mario; Parra, Lucas C.; Carmignoto, Giorgio;
Open Access English
  • Published: 01 Oct 2012 Journal: Frontiers in Computational Neuroscience, volume 6 (issn: 1662-5188, eissn: 1662-5188, Copyright policy)
  • Publisher: Frontiers Media S.A.
Abstract
Empirical research in the last decade revealed that astrocytes can respond to neurotransmitters with Ca2+ elevations and generate feedback signals to neurons which modulate synaptic transmission and neuronal excitability. This discovery changed our basic understanding of brain function and provided new perspectives for how astrocytes can participate not only to information processing, but also to the genesis of brain disorders, such as epilepsy. Epilepsy is a neurological disorder characterized by recurrent seizures that can arise focally at restricted areas and propagate throughout the brain. Studies in brain slice models suggest that astrocytes contribute to e...
Subjects
free text keywords: epilepsy, excitation/inhibition balance, Neuroscience, neuron-astrocyte interaction, Original Research Article, computational model, tripartite synapse
Related Organizations
Funded by
NIH| CRCNS: Effects of Weak Applied Currents on Memory Consolidation During Sleep
Project
  • Funder: National Institutes of Health (NIH)
  • Project Code: 5R01MH092926-05
  • Funding stream: NATIONAL INSTITUTE OF MENTAL HEALTH
,
EC| NEUROGLIA
Project
NEUROGLIA
Molecular and cellular investigation of neuron-astroglia interactions: Understanding brain function and dysfunction
  • Funder: European Commission (EC)
  • Project Code: 202167
  • Funding stream: FP7 | SP1 | HEALTH
101 references, page 1 of 7

Alger B. E.Nicoll R. A. (1980). Epileptiform burst afterhyperolarization: calcium-dependent potassium potential in hippocampal CA1 pyramidal cells. Science 210, 1122–1124 10.1126/science.7444438 7444438 [PubMed] [DOI]

Amiri M.Bahrami F.Janahmadi M. (2012). On the role of astrocytes in epilepsy: a functional modeling approach. Neurosci. Res. 72, 172–180 10.1016/j.neures.2011.11.006 22138615 [PubMed] [DOI]

Araque A.Li N.Doyle R. T.Haydon P. G. (2000). SNARE protein-dependent glutamate release from astrocytes. J. Neurosci. 20, 666–673 10632596 [OpenAIRE] [PubMed]

Araque A.Parpura V.Sanzgiri R. P.Haydon P. G. (1999). Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci. 22, 208–215 10.1016/S0166-2236(98)01349-6 10322493 [PubMed] [DOI]

Arcuino G.Lin J. H.-C.Takano T.Liu C.Jiang L.Gao Q. (2002). Intercellular calcium signaling mediated by point-source burst release of ATP. Proc. Natl. Acad. Sci. U.S.A. 99, 9840–9845 10.1073/pnas.152588599 12097649 [OpenAIRE] [PubMed] [DOI]

Avoli M.D'Antuono M.Louvel J.Kohling R.Biagini G.Pumain R. (2002). Network and pharmacological mechanisms leading to epileptiform synchronization in the limbic system in vitro. Prog. Neurobiol. 68, 167–207 10.1016/S0301-0082(02)00077-1 12450487 [PubMed] [DOI]

Bazhenov M.Timofeev I.Steriade M.Sejnowski T. J. (2004). Potassium model for slow (2-3 Hz) in vivo neocortical paroxysmal oscillations. J. Neurophysiol. 92, 1116–1132 10.1152/jn.00529.2003 15056684 [OpenAIRE] [PubMed] [DOI]

Ben-Ari Y. (2002). Excitatory actions of GABA during development: the nature of the nurture. Nat. Rev. Neurosci. 3, 728–739 10.1038/nrn920 12209121 [OpenAIRE] [PubMed] [DOI]

Bezzi P.Carmignoto G.Pasti L.Vesce S.Rossi D.Rizzini B. L. (1998). Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. Nature 391, 281–285 10.1038/34651 9440691 [PubMed] [DOI]

Bowser D. N.Khakh B. S. (2007). Vesicular ATP is the predominant cause of intercellular calcium waves in astrocytes. J. Gen. Physiol. 129, 485–491 10.1085/jgp.200709780 17504911 [OpenAIRE] [PubMed] [DOI]

Bradford H. F. (1995). Glutamate, GABA and epilepsy. Prog. Neurobiol. 47, 477–511 10.1016/0301-0082(95)00030-5 8787032 [PubMed] [DOI]

Brockhaus J.Deitmer J. W. (2002). Long-lasting modulation of synaptic input to Purkinje neurons by Bergmann glia stimulation in rat brain slices. J. Physiol. 545, 581–593 10.1113/jphysiol.2002.028423 12456836 [OpenAIRE] [PubMed] [DOI]

Bushong E. A.Martone M. E.Jones Y. Z.Ellisman M. H. (2002). Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J. Neurosci. 22, 183–192 11756501 [OpenAIRE] [PubMed]

Carmignoto G. (2000). Reciprocal communication systems between astrocytes and neurones. Prog. Neurobiol. 62, 561–581 10880851 [PubMed]

Cornell-Bell A. H.Finkbeiner S. M.Cooper M. S.Smith S. J. (1990). Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science 247, 470–473 10.1126/science.1967852 1967852 [PubMed] [DOI]

101 references, page 1 of 7
Abstract
Empirical research in the last decade revealed that astrocytes can respond to neurotransmitters with Ca2+ elevations and generate feedback signals to neurons which modulate synaptic transmission and neuronal excitability. This discovery changed our basic understanding of brain function and provided new perspectives for how astrocytes can participate not only to information processing, but also to the genesis of brain disorders, such as epilepsy. Epilepsy is a neurological disorder characterized by recurrent seizures that can arise focally at restricted areas and propagate throughout the brain. Studies in brain slice models suggest that astrocytes contribute to e...
Subjects
free text keywords: epilepsy, excitation/inhibition balance, Neuroscience, neuron-astrocyte interaction, Original Research Article, computational model, tripartite synapse
Related Organizations
Funded by
NIH| CRCNS: Effects of Weak Applied Currents on Memory Consolidation During Sleep
Project
  • Funder: National Institutes of Health (NIH)
  • Project Code: 5R01MH092926-05
  • Funding stream: NATIONAL INSTITUTE OF MENTAL HEALTH
,
EC| NEUROGLIA
Project
NEUROGLIA
Molecular and cellular investigation of neuron-astroglia interactions: Understanding brain function and dysfunction
  • Funder: European Commission (EC)
  • Project Code: 202167
  • Funding stream: FP7 | SP1 | HEALTH
101 references, page 1 of 7

Alger B. E.Nicoll R. A. (1980). Epileptiform burst afterhyperolarization: calcium-dependent potassium potential in hippocampal CA1 pyramidal cells. Science 210, 1122–1124 10.1126/science.7444438 7444438 [PubMed] [DOI]

Amiri M.Bahrami F.Janahmadi M. (2012). On the role of astrocytes in epilepsy: a functional modeling approach. Neurosci. Res. 72, 172–180 10.1016/j.neures.2011.11.006 22138615 [PubMed] [DOI]

Araque A.Li N.Doyle R. T.Haydon P. G. (2000). SNARE protein-dependent glutamate release from astrocytes. J. Neurosci. 20, 666–673 10632596 [OpenAIRE] [PubMed]

Araque A.Parpura V.Sanzgiri R. P.Haydon P. G. (1999). Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci. 22, 208–215 10.1016/S0166-2236(98)01349-6 10322493 [PubMed] [DOI]

Arcuino G.Lin J. H.-C.Takano T.Liu C.Jiang L.Gao Q. (2002). Intercellular calcium signaling mediated by point-source burst release of ATP. Proc. Natl. Acad. Sci. U.S.A. 99, 9840–9845 10.1073/pnas.152588599 12097649 [OpenAIRE] [PubMed] [DOI]

Avoli M.D'Antuono M.Louvel J.Kohling R.Biagini G.Pumain R. (2002). Network and pharmacological mechanisms leading to epileptiform synchronization in the limbic system in vitro. Prog. Neurobiol. 68, 167–207 10.1016/S0301-0082(02)00077-1 12450487 [PubMed] [DOI]

Bazhenov M.Timofeev I.Steriade M.Sejnowski T. J. (2004). Potassium model for slow (2-3 Hz) in vivo neocortical paroxysmal oscillations. J. Neurophysiol. 92, 1116–1132 10.1152/jn.00529.2003 15056684 [OpenAIRE] [PubMed] [DOI]

Ben-Ari Y. (2002). Excitatory actions of GABA during development: the nature of the nurture. Nat. Rev. Neurosci. 3, 728–739 10.1038/nrn920 12209121 [OpenAIRE] [PubMed] [DOI]

Bezzi P.Carmignoto G.Pasti L.Vesce S.Rossi D.Rizzini B. L. (1998). Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. Nature 391, 281–285 10.1038/34651 9440691 [PubMed] [DOI]

Bowser D. N.Khakh B. S. (2007). Vesicular ATP is the predominant cause of intercellular calcium waves in astrocytes. J. Gen. Physiol. 129, 485–491 10.1085/jgp.200709780 17504911 [OpenAIRE] [PubMed] [DOI]

Bradford H. F. (1995). Glutamate, GABA and epilepsy. Prog. Neurobiol. 47, 477–511 10.1016/0301-0082(95)00030-5 8787032 [PubMed] [DOI]

Brockhaus J.Deitmer J. W. (2002). Long-lasting modulation of synaptic input to Purkinje neurons by Bergmann glia stimulation in rat brain slices. J. Physiol. 545, 581–593 10.1113/jphysiol.2002.028423 12456836 [OpenAIRE] [PubMed] [DOI]

Bushong E. A.Martone M. E.Jones Y. Z.Ellisman M. H. (2002). Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J. Neurosci. 22, 183–192 11756501 [OpenAIRE] [PubMed]

Carmignoto G. (2000). Reciprocal communication systems between astrocytes and neurones. Prog. Neurobiol. 62, 561–581 10880851 [PubMed]

Cornell-Bell A. H.Finkbeiner S. M.Cooper M. S.Smith S. J. (1990). Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science 247, 470–473 10.1126/science.1967852 1967852 [PubMed] [DOI]

101 references, page 1 of 7
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Article . 2012

Computational model of neuron-astrocyte interactions during focal seizure generation

Reato, Davide; Cammarota, Mario; Parra, Lucas C.; Carmignoto, Giorgio;