C-GLORSv5: an improved multipurpose global ocean eddy-permitting physical reanalysis

Other literature type, Article English OPEN
Storto, Andrea ; Masina, Simona (2016)
  • Publisher: Copernicus Publications
  • Journal: (issn: 1866-3516, eissn: 1866-3516)
  • Related identifiers: doi: 10.5194/essd-8-679-2016
  • Subject: GE1-350 | QE1-996.5 | Environmental sciences | Geology

Global ocean reanalyses combine in situ and satellite ocean observations with a general circulation ocean model to estimate the time-evolving state of the ocean, and they represent a valuable tool for a variety of applications, ranging from climate monitoring and process studies to downstream applications, initialization of long-range forecasts and regional studies. The purpose of this paper is to document the recent upgrade of C-GLORS (version 5), the latest ocean reanalysis produced at the Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC) that covers the meteorological satellite era (1980–present) and it is being updated in delayed time mode. The reanalysis is run at eddy-permitting resolution (1∕4° horizontal resolution and 50 vertical levels) and consists of a three-dimensional variational data assimilation system, a surface nudging and a bias correction scheme. With respect to the previous version (v4), C-GLORSv5 contains a number of improvements. In particular, background- and observation-error covariances have been retuned, allowing a flow-dependent inflation in the globally averaged background-error variance. An additional constraint on the Arctic sea-ice thickness was introduced, leading to a realistic ice volume evolution. Finally, the bias correction scheme and the initialization strategy were retuned. Results document that the new reanalysis outperforms the previous version in many aspects, especially in representing the variability of global heat content and associated steric sea level in the last decade, the top 80 m ocean temperature biases and root mean square errors, and the Atlantic Ocean meridional overturning circulation; slight worsening in the high-latitude salinity and deep ocean temperature emerge though, providing the motivation for further tuning of the reanalysis system. The dataset is available in NetCDF format at <a href="http://dx.doi.org/10.1594/PANGAEA.857995" target="_blank">doi:10.1594/PANGAEA.857995</a>.
  • References (63)
    63 references, page 1 of 7

    Balmaseda, M. and Anderson, D.: Impact of initialization strategies and observations on seasonal forecast skill, Geophys. Res. Lett., 36, L01701, doi:10.1029/2008GL035561, 2009.

    Balmaseda, M. A., Hernandez, F., Storto, A., Palmer, M. D., Alves, O., Shi, L., Smith, G. C., Toyoda, T., Valdivieso, M., Barnier, B., Behringer, D., Boyer, T., Chang, Y.-S., Chepurin, G. A., Ferry, N., Forget, G., Fujii, Y., Good, S., Guinehut, S., Haines, K., Ishikawa, Y., Keeley, S., Köhl, A., Lee, T., Martin, M. J., Masina, S., Masuda, S., Meyssignac, B., Mogensen, K., Parent, L., Peterson, K. A., Tang, Y. M., Yin, Y., Vernieres, G., Wang, X., Waters, J., Wedd, R., Wang, O., Xue, Y., Chevallier, M., Lemieux, J.-F., Dupont, F., Kuragano, T., Kamachi, M., Awaji, T., Caltabiano, A., Wilmer-Becker, K., and Gaillard, F.: The Ocean Reanalyses Intercomparison Project (ORA-IP), J. Oper. Oceanogr., 8, s80- s97, 2015.

    Barnier, B., Madec, G., Penduff, T., Molines, J. M., Treguier, A. M., Le Sommer, J., Beckmann, A., Biastoch, A., Boning, C., Dengg, J., Derval, C., Durand, E., Gulev, S., Remy, E., Talandier, C., Theetten, S., Maltrud, M., McClean, J., and De Cuevas, B.: Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy-permitting resolution, Ocean Dynam., 56, 543-567, doi:10.1007/s10236-006-0082-1, 2006.

    Bellucci, A., Masina, S., Di Pietro, P., and Navarra, A.: Using temperature salinity relations in a Global Ocean implementation of a multivariate data assimilation scheme, Mon. Weather Rev., 135, 3785-3807, 2007.

    Bernie, D. J., Guilyardi, E., Madec, G., Slingo, J. M., and Woolnough, S. J.: Impact of resolving the diurnal cycle in an oceanatmosphere GCM. Part 1: A diurnally forced OGCM, Clim. Dynam., 29, 575-590, 2007.

    Bouillon, S., Morales Maqueda, M. A., Legat, V., and Fichefet, T.: An elastic-viscous-plastic sea ice model formulated on Arakawa B and C grids, Ocean Model., 27, 174-184, 2009.

    Calvert, D. and Siddorn, J.: Revised vertical mixing parameters for the UK community standard configuration of the global NEMO ocean model, Hadley Centre Technical Note 95, 74 pp., available at: http://www.metoffice.gov.uk/media/pdf/9/0/HCTN_ 95.pdf (last access: 21 May 2014), 2013.

    Carton, J. and Santorelli, A.: Global upper ocean heat content as viewed in nine analyses, J. Climate, 21, 6015-6035, 2008.

    Cavalieri, D. J., Parkinson, C. L., Gloersen, P., Comiso, J. C., and Zwally, H. J.: Deriving long-term time series of sea ice cover from satellite passive-microwave multisensor data sets, J. Geophys. Res., 104, 15803-15814, doi:10.1029/1999JC900081, 1999.

    Cessi, P., Pinardi, N., and Lyubartsev, V.: Energetics of Semienclosed Basins with Two-Layer Flows at the Strait, J. Phys. Oceanogr., 44, 967-979, 2014.

  • Related Research Results (2)
  • Similar Research Results (1)
  • Metrics
    No metrics available
Share - Bookmark