publication . Article . Preprint . 2018

Nonlinear growth of structure in cosmologies with damped matter fluctuations

Baojiu Li; Carlton M. Baugh; Matteo Leo; Silvia Pascoli;
Open Access
  • Published: 01 Aug 2018 Journal: Journal of Cosmology and Astroparticle Physics, volume 2,018, pages 1-1 (eissn: 1475-7516, Copyright policy)
  • Publisher: IOP Publishing
  • Country: United Kingdom
Abstract
We investigate the nonlinear evolution of structure in variants of the standard cosmological model which display damped density fluctuations relative to cold dark matter (e.g. in which cold dark matter is replaced by warm or interacting DM). Using N-body simulations, we address the question of how much information is retained from different scales in the initial linear power spectrum following the nonlinear growth of structure. We run a suite of N-body simulations with different initial linear matter power spectra to show that, once the system undergoes nonlinear evolution, the shape of the linear power spectrum at high wavenumbers does not affect the non-linear...
Subjects
free text keywords: Astronomy and Astrophysics, Astrophysics - Cosmology and Nongalactic Astrophysics, Spectral density, Halo mass function, Spectral line, Physics, Wavenumber, Cold dark matter, Transfer function, Statistical physics, Nonlinear system, Lambda-CDM model
Funded by
RCUK| Durham Astronomy Consolidated Grant 2014-2017
Project
  • Funder: Research Council UK (RCUK)
  • Project Code: ST/L00075X/1
  • Funding stream: STFC
,
EC| ELUSIVES
Project
ELUSIVES
The Elusives Enterprise: Asymmetries of the Invisible Universe
  • Funder: European Commission (EC)
  • Project Code: 674896
  • Funding stream: H2020 | MSCA-ITN-ETN
,
EC| NUMASS
Project
NUMASS
Neutrinos: a different portal to new physics Beyond the Standard Model
  • Funder: European Commission (EC)
  • Project Code: 617143
  • Funding stream: FP7 | SP2 | ERC
,
EC| InvisiblesPlus
Project
InvisiblesPlus
InvisiblesPlus
  • Funder: European Commission (EC)
  • Project Code: 690575
  • Funding stream: H2020 | MSCA-RISE
,
RCUK| Durham DiRAC-2 petascale facility support
Project
  • Funder: Research Council UK (RCUK)
  • Project Code: ST/K003267/1
  • Funding stream: STFC
54 references, page 1 of 4

[1] D. H. Weinberg, J. S. Bullock, F. Governato, R. K. de Naray, A. H. G. Peter, Cold dark matter: controversies on small scales, Proc. Nat. Acad. Sci. 112, 12249-12255 (2014) [arXiv:1306.0913 [astro-ph.CO]].

[2] J. Dubinski, R. G. Carlberg, The Structure of cold dark matter halos, Astrophys. J. 378, 496 (1991). [OpenAIRE]

[3] J. F. Navarro, C. S Frenk, S. D. M. White, The Structure of cold dark matter halos, Astrophys. J. 462, 563-575 (1996) [arXiv:astro-ph/9508025].

[4] J. F. Navarro, C. S Frenk, S. D. M. White, A Universal density pro le from hierarchical clustering, Astrophys. J. 490, 493-508 (1997) [arXiv:astro-ph/9611107].

[5] W. J. G. de Blok, S. S. McGaugh, A. Bosma, V. C. Rubin, Mass density pro les of LSB galaxies, Astrophys. J. 552, L23-L26 (2001) [arXiv:astro-ph/0103102].

[6] P. Salucci, M. I. Wilkinson, M. G. Walker, G. F. Gilmore, E. K. Grebel, A. Koch, C. Frigerio Martins, R. F. G. Wyse, Dwarf spheroidal galaxy kinematics and spiral galaxy scaling laws, Mon. Not. Roy. Astron. Soc. 420, 2034 (2012) [arXiv:1111.1165 [astro-ph.CO]].

[7] A. Klypin, A. V. Kravtsov, O. Valenzuela, F. Prada, Where are the missing Galactic satellites?, Astrophys. J. 522, 82-92 (1999) [arXiv:astro-ph/9901240].

[8] B. Moore, S. Ghigna, F. Governato, G. Lake, T. Quinn, J. Stadel, P. Tozzi, Dark matter substructure within galactic halos, Astrophys. J. 524, L19-L22 (1999) [arXiv:astro-ph/9907411].

[9] M. Boylan-Kolchin, J. S. Bullock, M. Kaplinghat, Too big to fail? The puzzling darkness of massive Milky Way subhaloes, Mon. Not. Roy. Astron. Soc. 415, L40 (2011) [arXiv:1103.0007 [astro-ph.CO]]. [OpenAIRE]

[10] S. Mashchenko, J. Wadsley, H. M. P. Couchman, Stellar Feedback in Dwarf Galaxy Formation, Science 319, 174 (2008) [arXiv:0711.4803 [astro-ph]].

[11] A. Pontzen, F. Governato, How supernova feedback turns dark matter cusps into cores, Mon. Not. R. Astron. Soc. 421, 3464-3471 (2012) [arXiv:1106.0499 [astro-ph.CO]]. [OpenAIRE]

[12] D. Martizzi, R. Teyssier, B. Moore, Cusp-core transformations induced by AGN feedback in the progenitors of cluster galaxies , Mon. Not. R. Astron. Soc. 432, 1947-1954 (2013) [arXiv:1211.2648 [astro-ph.CO]]. [OpenAIRE]

[13] A. M. Brooks, A. Zolotov, Why Baryons Matter: The Kinematics of Dwarf Spheroidal Satellites, ApJ 786, 87 (2014) [arXiv:1207.2468 [astro-ph.CO]]. [OpenAIRE]

[14] J. Wang, C. S. Frenk, J. F. Navarro, L. Gao, T. Sawala, The missing massive satellites of the Milky Way, Mon. Not. R. Astron. Soc. 424, 2715-2721 (2012) [arXiv:1203.4097 [astro-ph.GA]].

[15] M. Kamionkowski, A. R. Liddle, The Dearth of halo dwarf galaxies: Is there power on short scales?, Phys. Rev. Lett. 84, 4525 (2000) [arXiv:astro-ph/9911103]. [OpenAIRE]

54 references, page 1 of 4
Any information missing or wrong?Report an Issue