Bascule d'un modèle poutre à un modèle 3D en dynamique des machines tournantes

Conference object French OPEN
Tannous , Mikhael; Cartraud , Patrice; Dureisseix , David; Torkhani , Mohamed;
(2013)
  • Publisher: HAL CCSD
  • Subject: [PHYS.MECA.STRU]Physics [physics]/Mechanics [physics]/Mechanics of the structures [physics.class-ph] | Bascule | éléments finis. | [ PHYS.MECA.STRU ] Physics [physics]/Mechanics [physics]/Mechanics of the structures [physics.class-ph] | Dynamique des rotors

National audience; Les problèmes de machines tournantes incluant un contact rotor-stator, nécessitent un maillage 3D de la zone de contact. Cependant, un modèle 3D pour toute la durée de simulation conduit à des temps de calcul rédhibitoires. Or un modèle poutre est suf... View more
  • References (24)
    24 references, page 1 of 3

    [1] P. Alart, M. Barboteu, P. Le Tallec, et M. Vidrascu. Additive schwarz method for nonsymmetric problems : application to frictional multicontact problems, Thirteenth International Conference on Domain Decomposition Methods, 2001.

    [2] P. Avery et C. Farhat. The feti family of domain decomposition methods for inequality-constrained quadratic programming : Application to contact problems with conforming and nonconforming interfaces, Computer Methods in Applied Mechanics and Engineering, 198 :1673-1683, 2009.

    [3] H. Ben-Dhia et G. Rateau. The arlequin method as a flexible engineering design tool, International Journal for Numerical Methods in Engineering, 62 :1442-1462, 2005.

    [4] M. Chevreuil, A. Nouy, et E. Safatly. A multiscale method with patch for the solution of stochastic partial differential equations with localized uncertainties, submitted to CMAME, 2012.

    [5] C. Farhat, K. Pierson, et M. Lesoinne. The second generation feti methods and their application to the parallel solution of large-scale linear and geometrically non-linear structural analysis problems, Computer Methods in Applied Mechanics and Engineering, 184 :333-374, 2000.

    [6] L. Gendre, O. Allix, et P. Gosselet. A two-scale approximation of the schur complement and its use for nonintrusive coupling, International Journal For Numerical Methods In Engineering, 87 :889-905, 2011.

    [7] R. Glowinski, J. He, A. Lozinski, J. Rappaz, et J. Wagner. Finite element approximation of multi-scale elliptic problems using patches of elements, Numer. Math., 101 :663-687, 2005.

    [8] J. He, A. Lozinski, et J. Rappaz. Accelerating the method of finite element patches using approximately harmonic functions, C. R. Math. Acad. Sci. Paris, 345 :107-112, 2007.

    [9] I. Hirai. An exact zooming method for finite element analyses, NASA Conference Publication 2245, 1982.

    [10] I. Hirai, Y. Uchiyama, Y. Mizuta, et W. Pilkey. An exact zooming method, Finite Elements in Analysis and Design, 1 :61-69, 1985.

  • Metrics
Share - Bookmark