Counting curves, and the stable length of currents

Preprint English OPEN
Erlandsson, Viveka; Parlier, Hugo; Souto, Juan; (2016)
  • Subject: : Mathematics [G03] [Physical, chemical, mathematical & earth Sciences] | Mathematics - Group Theory | : Mathématiques [G03] [Physique, chimie, mathématiques & sciences de la terre] | Mathematics - Dynamical Systems | Mathematics - Geometric Topology | Mathematics - Differential Geometry

Let $\gamma_0$ be a curve on a surface $\Sigma$ of genus $g$ and with $r$ boundary components and let $\pi_1(\Sigma)\curvearrowright X$ be a discrete and cocompact action on some metric space. We study the asymptotic behavior of the number of curves $\gamma$ of type $\g... View more
  • References (18)
    18 references, page 1 of 2

    [1] J. Aramayona and C. Leininger, Hyperbolic structures on surfaces and geodesic currents, to appear in Algorithms and geometric topics around automorphisms of free groups, Advanced Courses CRM-Barcelona, Birkhauser.

    [2] F. Bonahon, Bouts des varietes hyperboliques de dimension 3, Ann. of Math. (2), 124:71{158, (1986).

    [3] F. Bonahon, The geometry of Teichmuller space via geodesic currents, Invent. Math. 92(1):139{162, (1988).

    [4] F. Bonahon, Geodesic currents on negatively curved groups, in Arboreal group theory, MSRI Publications, 19:143{168, (1991).

    [5] M. Bridson and A. Hae iger, Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften 319. Springer-Verlag, (1999).

    [6] A. Casson and S. Bleiler, Automorphisms of surfaces after Nielsen and Thurston, London Mathematical Society Student Texts, 9. Cambridge University Press, (1988).

    [7] M. Chas, Non-abelian number theory and the structure of curves on surfaces, arXiv:1608.02846, Preprint (2016).

    [8] M. Coornaert and A. Papadopoulos, Symbolic coding for the geodesic ow associated to a word hyperbolic group, Manuscripta Math.,109(4):465{492, (2002).

    [9] V. Erlandsson, A remark on the word length in surface groups, arXiv:1608.07436, Preprint 2016.

    [10] V. Erlandsson and J. Souto, Counting curves in hyperbolic surfaces, GAFA, 26(3):729{777, (2016).

  • Metrics
    No metrics available