31 references, page 1 of 4 [1] A. Ali and H. Kalisch, Mechanical balance laws for Boussinesq models of surface water waves, J. Nonlinear Sci. 22 (2012), 371{398.

[2] A. Ali and H. Kalisch, On the formulation of mass, momentum and energy conservation in the KdV equation, Acta Appl. Math. 133 (2014), 113{131.

[3] R. Barros, S. Gavrilyuk and V. Teshukov, Dispersive nonlinear waves in two-layer ows with free surface. I. Model derivation and general properties, Studies in Applied Mathematics, 119 (2007), 191{211.

[4] E. Barthelemy, Nonlinear shallow water theories for coastal waves, Surv. Geophys. 25 (2004), 315{337.

[5] T.B. Benjamin and P.J. Olver, Hamiltonian structure, symmetries and conservation laws for water waves J. Fluid Mech. 125 (1982), 137{185.

[6] M. Bj rkavag and H. Kalisch. Wave breaking in Boussinesq models for undular bores, Phys. Lett. A 375 (2011), 1570{1578.

[7] P. Bonneton, E. Barthelemy, F. Chazel, R. Cienfuegos, D. Lannes, F. Marche and M. Tissier, Recent advances in Serre-Green-Naghdi modelling for wave transformation, breaking and runup processes, European J. Mech. B 30 (2011), 589{597.

[8] P. Bonneton, F. Chazel, D. Lannes, F. Marche and M. Tissier, A splitting approach for the fully nonlinear and weakly dispersive Green-Naghdi model J. Comput. Phys. 230 (2011), 1479{1498.

[9] H. Borluk and H. Kalisch, Particle dynamics in the KdV approximation, Wave Motion 49 (2012), 691{709.

[10] J.D. Carter and R. Cienfuegos, The kinematics and stability of solitary and cnoidal wave solutions of the Serre equations, Eur. J. Mech. B/Fluids 30 (2011), 259{268.