A uniform law for convergence to the local times of linear fractional stable motions

Preprint, Other literature type English OPEN
Duffy, James A.;
(2015)
  • Publisher: The Institute of Mathematical Statistics
  • Journal: issn: 1050-5164
  • Publisher copyright policies & self-archiving
  • Related identifiers: doi: 10.1214/14-AAP1085
  • Subject: 60J55 | integral functionals of stochastic processes | 62M10 | 60F17 | 62G08 | 60G18 | nonlinear cointegration | Mathematics - Statistics Theory | nonparametric regression | Fractional stable motion | fractional Brownian motion | weak convergence to local time | local time

We provide a uniform law for the weak convergence of additive functionals of partial sum processes to the local times of linear fractional stable motions, in a setting sufficiently general for statistical applications. Our results are fundamental to the analysis of the ... View more
  • References (38)
    38 references, page 1 of 4

    if H = 1/α,

    Lemma 9.4. n cs ds−1 . X ds−1 . ndn−1 = en,

    s=k+1 ck+s s=1

    Astrauskas, A. (1983). Limit theorems for sums of linearly generated random variables. Lith. Math. J. 23 127-134. MR0706002

    Avram, F. and Taqqu, M. S. (1992). Weak convergence of sums of moving averages in the α-stable domain of attraction. Ann. Probab. 20 483-503. MR1143432

    Bercu, B. and Touati, A. (2008). Exponential inequalities for self-normalized martingales with applications. Ann. Appl. Probab. 18 1848-1869. MR2462551

    Bingham, N. H., Goldie, C. M. and Teugels, J. L. (1987). Regular Variation. Cambridge Univ. Press, Cambridge. MR1015093

    Borodin, A. N. (1981). The asymptotic behavior of local times of recurrent random walks with finite variance. Theory Probab. Appl. 26 758-772. MR0636771

    Borodin, A. N. (1982). On the asymptotic behavior of local times of recurrent random walks with infinite variance. Theory Probab. Appl. 29 318-333. MR0749918

    Borodin, A. N. and Ibragimov, I. A. (1995). Limit theorems for functionals of random walks. Proc. Steklov Inst. Math. 195 1-259. MR1368394

  • Related Organizations (6)
  • Metrics
Share - Bookmark