Mathematical analysis of Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation

Preprint English OPEN
Rozanova-Pierrat , Anna;
  • Publisher: HAL CCSD
  • Subject: [ MATH.MATH-OC ] Mathematics [math]/Optimization and Control [math.OC] | [MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]
    arxiv: Mathematics::Analysis of PDEs | Physics::Fluid Dynamics

We consider the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation (ut — uux — βuxx)x— γΔy u = 0 in Sobolev spaces of functions periodic in x and with mean value zero. The derivation of KZK from the nonlinear isentropic Navier Stokes equations and the approximation of their... View more
  • References (11)
    11 references, page 1 of 2

    [7] S. Alinhac, P. G´erard Op´erateurs pseudo-differentiels et th´eor`eme de Nash-Moser. InterEditions, Paris, 1991.

    [8] M.A. Averkiou, Y.-S. Lee, M.F. Hamilton Self-demodulation of amplitudeand frequency-modulated pulses in a thermoviscous fluid. J. Acoust. Soc. Am. 94 (5), 1993, p. 2876-2883.

    [9] M.A. Averkiou, M.F. Hamilton Nonlinear distortion of short pulses radiated by plane and focused circular pistons. J. Acoust. Soc. Am. 102 (5), Pt.1, 1997, p. 2539-2548.

    [10] N.S. Bakhvalov, Ya. M. Zhileikin and E.A. Zabolotskaya Nonlinear Theory of Sound Beams, American Institute of Physics, New York, 1987 ( Nelineinaya teoriya zvukovih puchkov, Moscow “Nauka”, 1982).

    [11] Bardos C., Rozanova A. KZK equation. International Conference Crimean Autumn Mathematical School-Symposium (KROMSH-2004) Ukraine, Crimea, Laspi-Batiliman, September 18-29, 2004. p.154-159.

    [34] J.C. Saut, R. Temam Remarks on the Korteweg-de Vries equation, Israel Journal of Mathematics, Vol. 24, No 1, 1976.

    [35] J.C. Saut, N. Tzvetkov On Periodic KP-I Type Equations. Commun. Math. Phys. 221, 2001, p.451-476.

    [36] T. Sideris Formation of Singularities in Three-dimensional compressible fluids. Comm. Math. Phys. 101 1985, 475-485.

    [37] R. Temam Sur la stabilit´e et la convergence de la m´ethode des pas fractionnaires. (French) Ann. Mat. Pura Appl. (4) 79, 1968, p.191-379.

    [38] B. Texier The short-wave limit for nonlinear, symmetric, hyperbolic systems. Adv. Diff. equation 9 (2004), no. 1, 1-52. 2.

  • Similar Research Results (1)
  • Metrics
Share - Bookmark