On the construction of elliptic Chudnovsky-type algorithms for multiplication in large extensions of finite fields

Article, Preprint English OPEN
Ballet, Stéphane; Bonnecaze, Alexis; Tukumuli, Mila;
(2016)
  • Publisher: World Scientific Publishing
  • Related identifiers: doi: 10.1142/S0219498816500055
  • Subject: Multiplication algorithm | elliptic function field | finite field | [ MATH.MATH-AG ] Mathematics [math]/Algebraic Geometry [math.AG] | [MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG] | Mathematics - Algebraic Geometry | bilinear complexity | interpolation on algebraic curve

International audience; We indicate a strategy in order to construct bilinear multiplication algorithms of type Chudnovsky in large extensions of any finite field. In particular, using the symmetric version of the generalization of Randriambololona specialized on the el... View more
  • References (33)
    33 references, page 1 of 4

    [1] N. Arnaud. Évaluation Dérivées, Multiplication dans les Corps Finis et Codes Correcteurs. PhD Thesis, 2006. Université de la Méditerranée, Institut de Mathématiques de Luminy.

    [2] S. Ballet. Curves with many points and multiplication complexity in any extension of Fq. Finite Fields and their Applications, 5(4), 364-377, 1999.

    [3] S. Ballet. Quasi-optimal algorithms for multiplication in the extensions of F16 of degree 13; 14 and 15. Journal of Pure and Applied Algebra, 171(2-3), 149-164, 2002.

    [4] S. Ballet. An improvement of the construction of the D.V. and G.V. Chudnovsky algorithm for multiplication in finite fields. Theoretical Computer Science, 352(1-3), 293-305, 2006.

    [5] S. Ballet. On the tensor rank of the multiplication in the finite fields. Journal of Number Theory 128, 6, 1795-1806, 2008.

    [6] S. Ballet and D. Le Brigand. On the existence of non special divisor of degree g and g 1 in algebraic function fields over Fq. Journal of Number Theory, 116, 293-310, 2006.

    [7] S. Ballet and J. Chaumine. On the bounds of the bilinear complexity of multiplication in some finite fields. Applicable Algebra in Engineering, Communication and Computing, 15(3-4), 205-211, 2004.

    [8] S. Ballet and J. Pieltant. On the tensor rank of multiplication in any extension of F2. Journal of Complexity, 27, 230-245, 2011.

    [9] S. Ballet and R. Rolland. Multiplication algorithm in a finite field and tensor rank of the multiplication. Journal of Algebra, 272/1, 173-185, 2004.

    [10] S. Ballet and R. Rolland. On the bilinear complexity of the multiplication in finite fields. In Proceedings of the Conference Arithmetic, Geometry and Coding Theory (AGCT 2003), Société Mathématique de France, sér. Séminaires et Congrès 11, 179-188, 2005.

  • Metrics
    No metrics available
Share - Bookmark