Graphene on transition-metal dichalcogenides: A platform for proximity spin-orbit physics and optospintronics

Preprint, Article English OPEN
Gmitra, Martin ; Fabian, Jaroslav (2015)
  • Publisher: American Physical Society
  • Related identifiers: doi: 10.1103/PhysRevB.92.155403
  • Subject: 530 Physik | Condensed Matter - Mesoscale and Nanoscale Physics | ddc:530
    arxiv: Physics::Optics

Hybrids of graphene and two dimensional transition metal dichalcogenides (TMDC) have the potential to bring graphene spintronics to the next level. As we show here by performing first-principles calculations of graphene on monolayer MoS$_2$, there are several advantages of such hybrids over pristine graphene. First, Dirac electrons in graphene exhibit a giant global proximity spin-orbit coupling, without compromising the semimetallic character of the whole system at zero field. Remarkably, these spin-orbit effects can be very accurately described by a simple effective Hamiltonian. Second, the Fermi level can be tuned by a transverse electric field to cross the MoS$_2$ conduction band, creating a system of coupled massive and massles electron gases. Both charge and spin transport in such systems should be unique. Finally, we propose to use graphene/TMDC structures as a platform for optospintronics, in particular for optical spin injection into graphene and for studying spin transfer between TMDC and graphene.
  • References (43)
    43 references, page 1 of 5

    [1] W. Han, R. K. Kawakami, M. Gmitra, J. Fabian, M. Gmitra, R. K. Kawakami, and W. Han, Nature Nanotechnology 9, 794 (2014).

    [2] N. Tombros, C. Jozsa, M. Popinciuc, H. T. Jonkman, and B. J. van Wees, Nature 448, 571 (2007).

    [3] K. Pi, W. Han, K. M. McCreary, A. G. Swartz, Y. Li, and R. K. Kawakami, Phys. Rev. Lett. 104, 187201 (2010).

    [4] T.-Y. Yang, J. Balakrishnan, F. Volmer, A. Avsar, M. Jaiswal, J. Samm, S. R. Ali, A. Pachoud, M. Zeng, M. Popinciuc, et al., Phys. Rev. Lett. 107, 047206 (2011).

    [5] K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Phys. Rev. Lett. 105, 136805 (2010).

    [6] I. Zutic, J. Fabian, and S. Das Sarma, Rev. Mod. Phys. 76, 323 (2004).

    [7] J. Fabian, A. Matos-Abiague, C. Ertler, P. Stano, and I. Zutic, Acta Phys. Slovaca 57, 565 (2007).

    [8] O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis, Nature Nanotechnology 8, 497 (2013).

    [9] C. Huang, S. Wu, A. M. Sanchez, J. J. P. Peters, R. Beanland, J. S. Ross, P. Rivera, W. Yao, D. H. Cobden, and X. Xu, Nature Materials 13, 1096 (2014).

    [10] C.-H. Lee, G.-H. Lee, A. M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, et al., Nature Nanotechnology 9, 676 (2014).

  • Metrics
    0
    views in OpenAIRE
    8
    views in local repository
    6
    downloads in local repository

    The information is available from the following content providers:

    From Number Of Views Number Of Downloads
    University of Regensburg Publication Server 8 6
Share - Bookmark