Soil nitrate reducing processes – drivers, mechanisms for spatial variation, and significance for nitrous oxide production

Article English OPEN
Giles, Madeline; Morley, Nicholas; Baggs, Elizabeth M.; Daniell, Tim J.; (2012)
  • Publisher: Frontiers Media S.A.
  • Journal: Frontiers in Microbiology,volume 3 (issn: 1664-302X, eissn: 1664-302X)
  • Related identifiers: pmc: PMC3524552, doi: 10.3389/fmicb.2012.00407
  • Subject: functional diversity | Review Article | nitrous oxide | Microbiology | linkage between community structure and activity | spatial heterogeneity | denitrification | dissimilatory nitrate reduction to ammonium

The microbial processes of denitrification and dissimilatory nitrate reduction to ammonium\ud (DNRA) are two important nitrate reducing mechanisms in soil, which are responsible for\ud the loss of nitrate (NO−\ud 3 ) and production of the potent greenhouse gas, nitrous ... View more
  • References (175)
    175 references, page 1 of 18

    Abell, G. C. J., Revill, A. T., Smith, C., Bissett, A. P., Volkman, J. K., and Robert, S. S. (2010). Archaeal ammonia oxidizers and nirS-type denitrifiers dominate sediment nitrifying and denitrifying populations in a subtropical macrotidal estuary. ISME J. 4, 286-300.

    Amora-Lazcano, E., Vazquez, M. M., and Azcon, R. (1998). Response of nitrogen-transforming microorganisms to arbuscular mycorrhizal fungi. Biol. Fertil. Soils 27, 65-70.

    Andersen, K., Kjaer, T., and Revsbech, N. P. (2001). An oxygen insensitive microsensor for nitrous oxide. Sens. Actuators B Chem. 81, 42-48.

    Attard, E., Poly, F., Commeaux, C., Laurent, F., Terada, A., Smets, B. F., et al. (2010). Shifts between Nitrospiraand Nitrobacter-like nitrite oxidizers underlie the response of soil potential nitrite oxidation to changes in tillage practices. Environ. Microbiol. 12, 315-326.

    Azam, F., Müller, C., Weiske, A., Benckiser, G., and Ottow, J. (2002). Nitrification and denitrification as sources of atmospheric nitrous oxide - role of oxidizable carbon and applied nitrogen. Biol. Fertil. Soils 35, 54-61.

    Baggs, E. M., Smales, C. L., and Bateman, E. J. (2010). Changing pH shifts the microbial source as well as the magnitude of N2O emission from soil. Biol. Fertil. Soils 46, 793-805.

    Bakken, L. R., Bergaust, L., Liu, B., and Frostegard, A. (2012). Regulation of denitrification at the cellular level: a clue to the understanding of N2O emissions from soils. Philos. Trans. R. Soc. Lond B Biol. Sci. 367, 1226-1234.

    Balvanera, P., Pfisterer, A. B., Buchmann, N., He, J. S., Nakashizuka, T., Raffaelli, D., et al. (2006). Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol. Lett. 9, 1146-1156.

    Bateman, E. J., and Baggs, E. M. (2005). Contributions of nitrification and denitrification to N2O emissions from soils at different water-filled pore space. Biol. Fertil. Soils 41, 379-388.

    Bergaust, L., Bakken, L. R., and Frostegard, A. (2011). Denitrification regulatory phenotype, a new term for the characterization of denitrifying bacteria. Biochem. Soc. Trans. 39, 207-212.

  • Metrics
    views in OpenAIRE
    views in local repository
    downloads in local repository

    The information is available from the following content providers:

    FromNumber Of ViewsNumber Of Downloads
    White Rose Research Online - IRUS-UK 0 2
Share - Bookmark