Structural Cryptanalysis of McEliece Schemes with Compact Keys

Article English OPEN
Faugère, Jean-Charles; Otmani, Ayoub; Perret, Ludovic; De Portzamparc, Frédéric; Tillich, Jean-Pierre;
(2016)
  • Publisher: Springer Verlag
  • Journal: Designs, Codes and Cryptography, volume 79, issue 1, pages 87-112 (issn: 0925-1022, eissn: 1573-7586)
  • Publisher copyright policies & self-archiving
  • Related identifiers: doi: 10.1007/s10623-015-0036-z
  • Subject: public-key cryptography | [INFO.INFO-CR]Computer Science [cs]/Cryptography and Security [cs.CR] | folded code | [ INFO.INFO-CR ] Computer Science [cs]/Cryptography and Security [cs.CR] | McEliece cryptosystem | algebraic cryptanalysis

International audience; A very popular trend in code-based cryptography is to decrease the public-key size by focusing on subclasses of alternant/Goppa codes which admit a very compact public matrix, typically quasi-cyclic (QC), quasi-dyadic (QD), or quasi-monoidic (QM)... View more
  • References (44)
    44 references, page 1 of 5

    1. Morgan Barbier. Key reduction of mceliece's cryptosystem using list decoding. CoRR, abs/1102.2566, 2011.

    2. Paulo S. L. M. Barreto, Pierre-Louis Cayrel, Rafael Misoczki, and Robert Niebuhr. Quasi-dyadic CFS signatures. In Xuejia Lai, Moti Yung, and Dongdai Lin, editors, Inscrypt, volume 6584 of Lecture Notes in Computer Science, pages 336-349. Springer, 2010.

    3. Paulo S. L. M. Barreto, Richard Lindner, and Rafael Misoczki. Monoidic codes in cryptography. In Bo-Yin Yang, editor, PQCrypto, volume 7071 of Lecture Notes in Computer Science, pages 179-199. Springer, 2011.

    4. Anja Becker, Antoine Joux, Alexander May, and Alexander Meurer. Decoding random binary linear codes in 2n/20: How 1 + 1 = 0 improves information set decoding. In David Pointcheval and Thomas Johansson, editors, EUROCRYPT, volume 7237 of Lecture Notes in Computer Science, pages 520-536. Springer, 2012.

    5. T. P. Berger. Cyclic alternant codes induced by an automorphism of a GRS code. In R. Mullin and G. Mullen, editors, Finite fields: Theory, Applications and Algorithms, volume 225, pages 143-154, Waterloo, Canada, 1999. AMS, Contemporary Mathematics.

    6. T. P. Berger. Goppa and related codes invariant under a prescribed permutation. IEEE Trans. Inform. Theory, 46(7):2628, 2000.

    7. T. P. Berger. On the cyclicity of Goppa codes, parity-check subcodes of Goppa codes and extended Goppa codes. Finite Fields and Applications, 6:255-281, 2000.

    8. T. P. Berger, P.L. Cayrel, P. Gaborit, and A. Otmani. Reducing key length of the McEliece cryptosystem. In Bart Preneel, editor, Progress in Cryptology - Second International Conference on Cryptology in Africa (AFRICACRYPT 2009), volume 5580 of Lecture Notes in Computer Science, pages 77-97, Gammarth, Tunisia, June 21-25 2009.

    9. D. J. Bernstein, T. Lange, and C. Peters. Attacking and defending the McEliece cryptosystem. In PQCrypto, volume 5299 of LNCS, pages 31-46, 2008.

    10. D. J. Bernstein, T. Lange, and C. Peters. Attacking and defending the McEliece cryptosystem. In PQCrypto, pages 31-46, 2008.

  • Metrics