publication . Preprint . Article . 2020

CFT in Conformally Flat Spacetimes

Alvarez, Enrique; Santos-Garcia, Raquel;
Open Access English
  • Published: 22 Jan 2020
Abstract
Comment: Minor changes and some clarifications added. Published version. 16 pages
Subjects
arXiv: Quantitative Biology::BiomoleculesGeneral Relativity and Quantum Cosmology
free text keywords: High Energy Physics - Theory
Related Organizations
Funded by
EC| ELUSIVES
Project
ELUSIVES
The Elusives Enterprise: Asymmetries of the Invisible Universe
  • Funder: European Commission (EC)
  • Project Code: 674896
  • Funding stream: H2020 | MSCA-ITN-ETN
,
EC| InvisiblesPlus
Project
InvisiblesPlus
InvisiblesPlus
  • Funder: European Commission (EC)
  • Project Code: 690575
  • Funding stream: H2020 | MSCA-RISE
19 references, page 1 of 2

[1] S. Rychkov, EPFL Lectures on Conformal Field Theory in D ≥ 3 Dimensions (Springer, Cham, 2017), https://doi.org/ 10.1007/978-3-319-43626-5.

[2] H. Osborn, Lectures on conformal field theories, https:// www.damtp.cam.ac.uk/user/ho/CFTNotes.pdf.

[3] A. Z. Petrov, The classification of spaces defining gravitational fields, Gen. Relativ. Gravit. 32, 1665 (2000).

[4] L. P. Eisenhart, Riemannian Geometry (Princeton University Press, Princeton, 1997).

[5] P. Bačkovský and J. Niederle, On classification of conformally flat spaces, Czech. J. Phys. 47, 1001 (1997).

[6] J. L. Synge, Relativity: The General Theory (North-Holland, Amsterdam, 1960).

[7] B. S. DeWitt, Dynamical theory of groups and fields, Conf. Proc. C 630701, 585 (1964); Les Houches Lect. Notes 13, 585 (1964).

[8] D. Z. Freedman, K. Johnson, and J. I. Latorre, Differential regularization and renormalization: A new method of calculation in quantum field theory, Nucl. Phys. B371, 353 (1992).

[9] A. Lichnerowicz, Spin manifolds, Killing spinors and universality of the Hijazi inequality, Lett. Math. Phys. 13, 331 (1987).

[10] A. Lichnerowicz, Propagators, commutators and anti-commutators in general relativity, Gen. Relativ. Gravit. 50, 145 (2018).

[11] H. Osborn and G. M. Shore, Correlation functions of the energy momentum tensor on spaces of constant curvature, Nucl. Phys. B571, 287 (2000).

[12] I. Jack and H. Osborn, Background field calculations in curved space-time. 1. General formalism and application to scalar fields, Nucl. Phys. B234, 331 (1984).

[13] J. M. Gracia-Bondía, H. Gutie´rrez-Garro, and J. C. Várilly, Improved Epstein Glaser renormalization in x-space versus differential renormalization, Nucl. Phys. B886, 824 (2014).

[14] B. Allen and T. Jacobson, Vector two point functions in maximally symmetric spaces, Commun. Math. Phys. 103, 669 (1986).

[15] B. Allen and C. A. Lutken, Spinor two point functions in maximally symmetric spaces, Commun. Math. Phys. 106, 201 (1986). [OpenAIRE]

19 references, page 1 of 2
Abstract
Comment: Minor changes and some clarifications added. Published version. 16 pages
Subjects
arXiv: Quantitative Biology::BiomoleculesGeneral Relativity and Quantum Cosmology
free text keywords: High Energy Physics - Theory
Related Organizations
Funded by
EC| ELUSIVES
Project
ELUSIVES
The Elusives Enterprise: Asymmetries of the Invisible Universe
  • Funder: European Commission (EC)
  • Project Code: 674896
  • Funding stream: H2020 | MSCA-ITN-ETN
,
EC| InvisiblesPlus
Project
InvisiblesPlus
InvisiblesPlus
  • Funder: European Commission (EC)
  • Project Code: 690575
  • Funding stream: H2020 | MSCA-RISE
19 references, page 1 of 2

[1] S. Rychkov, EPFL Lectures on Conformal Field Theory in D ≥ 3 Dimensions (Springer, Cham, 2017), https://doi.org/ 10.1007/978-3-319-43626-5.

[2] H. Osborn, Lectures on conformal field theories, https:// www.damtp.cam.ac.uk/user/ho/CFTNotes.pdf.

[3] A. Z. Petrov, The classification of spaces defining gravitational fields, Gen. Relativ. Gravit. 32, 1665 (2000).

[4] L. P. Eisenhart, Riemannian Geometry (Princeton University Press, Princeton, 1997).

[5] P. Bačkovský and J. Niederle, On classification of conformally flat spaces, Czech. J. Phys. 47, 1001 (1997).

[6] J. L. Synge, Relativity: The General Theory (North-Holland, Amsterdam, 1960).

[7] B. S. DeWitt, Dynamical theory of groups and fields, Conf. Proc. C 630701, 585 (1964); Les Houches Lect. Notes 13, 585 (1964).

[8] D. Z. Freedman, K. Johnson, and J. I. Latorre, Differential regularization and renormalization: A new method of calculation in quantum field theory, Nucl. Phys. B371, 353 (1992).

[9] A. Lichnerowicz, Spin manifolds, Killing spinors and universality of the Hijazi inequality, Lett. Math. Phys. 13, 331 (1987).

[10] A. Lichnerowicz, Propagators, commutators and anti-commutators in general relativity, Gen. Relativ. Gravit. 50, 145 (2018).

[11] H. Osborn and G. M. Shore, Correlation functions of the energy momentum tensor on spaces of constant curvature, Nucl. Phys. B571, 287 (2000).

[12] I. Jack and H. Osborn, Background field calculations in curved space-time. 1. General formalism and application to scalar fields, Nucl. Phys. B234, 331 (1984).

[13] J. M. Gracia-Bondía, H. Gutie´rrez-Garro, and J. C. Várilly, Improved Epstein Glaser renormalization in x-space versus differential renormalization, Nucl. Phys. B886, 824 (2014).

[14] B. Allen and T. Jacobson, Vector two point functions in maximally symmetric spaces, Commun. Math. Phys. 103, 669 (1986).

[15] B. Allen and C. A. Lutken, Spinor two point functions in maximally symmetric spaces, Commun. Math. Phys. 106, 201 (1986). [OpenAIRE]

19 references, page 1 of 2
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue