publication . Article . Other literature type . Preprint . 2019

Scalar singlet dark matter in non-standard cosmologies.

Tommi Tenkanen; Nicolás Bernal; Catarina Cosme; Ville Vaskonen;
Open Access English
  • Published: 16 Jan 2019 Journal: The European Physical Journal C, volume 79, issue 1 (issn: 1434-6044, eissn: 1434-6052, Copyright policy)
Abstract
Comment: V1: 17 pages, 4 figures. V2: matches version published in EPJC
Subjects
free text keywords: Physics and Astronomy (miscellaneous), Engineering (miscellaneous), High Energy Physics - Phenomenology, Astrophysics - Cosmology and Nongalactic Astrophysics, Regular Article - Theoretical Physics, Astrophysics, QB460-466, Nuclear and particle physics. Atomic energy. Radioactivity, QC770-798, Dark matter, Coupling, Particle physics, Singlet state, Higgs boson, Standard Model, Physics, Scalar (physics), Expansion phase
Funded by
EC| ELUSIVES
Project
ELUSIVES
The Elusives Enterprise: Asymmetries of the Invisible Universe
  • Funder: European Commission (EC)
  • Project Code: 674896
  • Funding stream: H2020 | MSCA-ITN-ETN
,
EC| InvisiblesPlus
Project
InvisiblesPlus
InvisiblesPlus
  • Funder: European Commission (EC)
  • Project Code: 690575
  • Funding stream: H2020 | MSCA-RISE
,
RCUK| Astronomy Research at Queen Mary 2012-2015
Project
  • Funder: Research Council UK (RCUK)
  • Project Code: ST/J001546/1
  • Funding stream: STFC
98 references, page 1 of 7

1. G. Arcadi, M. Dutra, P. Ghosh, M. Lindner, Y. Mambrini, M. Pierre, S. Profumo, F.S. Queiroz, The waning of the WIMP? A review of models, searches, and constraints. Eur. Phys. J. C 78(3), 203 (2018). arXiv:1703.07364

2. J. McDonald, Thermally generated gauge singlet scalars as selfinteracting dark matter. Phys. Rev. Lett. 88, 091304 (2002). arXiv:hep-ph/0106249

3. L.J. Hall, K. Jedamzik, J. March-Russell, S.M. West, Freezein production of FIMP dark matter. JHEP 1003, 080 (2010). arXiv:0911.1120

4. N. Bernal, M. Heikinheimo, T. Tenkanen, K. Tuominen, V. Vaskonen, The dawn of FIMP dark matter: a review of models and constraints. Int. J. Mod. Phys. A 32(27), 1730023 (2017). arXiv:1706.07442

5. S. Davidson, M. Losada, A. Riotto, A new perspective on baryogenesis. Phys. Rev. Lett. 84, 4284-4287 (2000). arXiv:hep-ph/0001301

6. G.F. Giudice, E.W. Kolb, A. Riotto, Largest temperature of the radiation era and its cosmological implications. Phys. Rev. D 64, 023508 (2001). arXiv:hep-ph/0005123

7. R. Allahverdi, B. Dutta, K. Sinha, Baryogenesis and late-decaying moduli. Phys. Rev. D 82, 035004 (2010). arXiv:1005.2804

8. A. Beniwal, M. Lewicki, J.D. Wells, M. White, A.G. Williams, Gravitational wave, collider and dark matter signals from a scalar singlet electroweak baryogenesis. JHEP 08, 108 (2017). arXiv:1702.06124

9. R. Allahverdi, P.S.B. Dev, B. Dutta, A simple testable model of baryon number violation: baryogenesis, dark matter, neutronantineutron oscillation and collider signals. Phys. Lett. B 779, 262- 268 (2018). arXiv:1712.02713 [OpenAIRE]

10. N. Bernal, C.S. Fong, Hot leptogenesis from thermal dark matter. JCAP 1710(10), 042 (2017). arXiv:1707.02988

11. R.T. Co, F. D'Eramo, L.J. Hall, D. Pappadopulo, Freeze-in dark matter with displaced signatures at colliders. JCAP 1512(12), 024 (2015). arXiv:1506.07532

12. A. Berlin, D. Hooper, G. Krnjaic, PeV-scale dark matter as a thermal relic of a decoupled sector. Phys. Lett. B 760, 106-111 (2016). arXiv:1602.08490 [OpenAIRE]

13. T. Tenkanen, V. Vaskonen, Reheating the standard model from a hidden sector. Phys. Rev. D 94(8), 083516 (2016). arXiv:1606.00192 [OpenAIRE]

14. J.A. Dror, E. Kuflik, W.H. Ng, Codecaying dark matter. Phys. Rev. Lett. 117(21), 211801 (2016). arXiv:1607.03110 [OpenAIRE]

15. A. Berlin, D. Hooper, G. Krnjaic, Thermal dark matter from a highly decoupled sector. Phys. Rev. D 94(9), 095019 (2016). arXiv:1609.02555

98 references, page 1 of 7
Any information missing or wrong?Report an Issue