publication . Article . Preprint . Other literature type . 2018

Baryogenesis via leptonic CP-violating phase transition

Silvia Pascoli; Jessica Turner; Jessica Turner; Ye-Ling Zhou;
Open Access
  • Published: 01 May 2018
  • Publisher: Elsevier
  • Country: United Kingdom
Abstract
We propose a new mechanism to generate a lepton asymmetry based on the vacuum CP-violating phase transition (CPPT). This approach differs from classical thermal leptogenesis as a specific seesaw model, and its UV completion, need not be specified. The lepton asymmetry is generated via the dynamically realised coupling of the Weinberg operator during the phase transition. This mechanism provides a connection with low-energy neutrino observables.
Subjects
arXiv: High Energy Physics::PhenomenologyHigh Energy Physics::Experiment
free text keywords: Nuclear and High Energy Physics, High Energy Physics - Phenomenology, Astrophysics - Cosmology and Nongalactic Astrophysics, High Energy Physics - Experiment, QC1-999, Lepton, Baryon asymmetry, Particle physics, Neutrino, Seesaw molecular geometry, Phase transition, Leptogenesis, CP violation, Baryogenesis, Physics
Funded by
EC| NUMASS
Project
NUMASS
Neutrinos: a different portal to new physics Beyond the Standard Model
  • Funder: European Commission (EC)
  • Project Code: 617143
  • Funding stream: FP7 | SP2 | ERC
,
EC| ELUSIVES
Project
ELUSIVES
The Elusives Enterprise: Asymmetries of the Invisible Universe
  • Funder: European Commission (EC)
  • Project Code: 674896
  • Funding stream: H2020 | MSCA-ITN-ETN
,
EC| InvisiblesPlus
Project
InvisiblesPlus
InvisiblesPlus
  • Funder: European Commission (EC)
  • Project Code: 690575
  • Funding stream: H2020 | MSCA-RISE
33 references, page 1 of 3

[1] M. Fukugita, T. Yanagida, Phys. Lett. B 174 (1986) 45.

[2] S.Y. Khlebnikov, M.E. Shaposhnikov, Nucl. Phys. B 308 (1988) 885.

[3] A.D. Sakharov, Pis'ma Zh. Eksp. Teor. Fiz. 5 (1967) 32, JETP Lett. 5 (1967) 24, Sov. Phys. Usp. 34 (1991) 392, Usp. Fiz. Nauk 161 (1991) 61.

[4] R. Acciarri, et al., DUNE Collaboration, arXiv:1512.06148 [physics.ins-det].

[5] K. Abe, et al., Hyper-Kamiokande Proto-Collaboration, PTEP 2015 (2015) 053C02, arXiv:1502.05199 [hep-ex].

[6] C.D. Froggatt, H.B. Nielsen, Nucl. Phys. B 147 (1979) 277.

[7] R. Alonso, M.B. Gavela, G. Isidori, L. Maiani, J. High Energy Phys. 1311 (2013) 187, arXiv:1306.5927 [hep-ph].

[8] For a review, see e.g., S.F. King, A. Merle, S. Morisi, Y. Shimizu, M. Tanimoto, New J. Phys. 16 (2014) 045018, arXiv:1402.4271 [hep-ph].

[9] G.C. Branco, R.G. Felipe, F.R. Joaquim, Rev. Mod. Phys. 84 (2012) 515, arXiv: 1111.5332 [hep-ph].

[10] I. de Medeiros Varzielas, D. Emmanuel-Costa, Phys. Rev. D 84 (2011) 117901, arXiv:1106.5477 [hep-ph].

[11] J.S. Schwinger, J. Math. Phys. 2 (1961) 407.

[12] L.V. Keldysh, Zh. Eksp. Teor. Fiz. 47 (1964) 1515, Sov. Phys. JETP 20 (1965) 1018.

[13] S. Pascoli, J. Turner, Y.-L. Zhou, in preparation.

[14] E. Calzetta, B.L. Hu, Phys. Rev. D 37 (1988) 2878.

[15] K.c. Chou, Z.b. Su, B.l. Hao, L. Yu, Phys. Rep. 118 (1985) 1.

33 references, page 1 of 3
Any information missing or wrong?Report an Issue