Drought Tolerance in Pinus halepensis Seed Sources As Identified by Distinctive Physiological and Molecular Markers

Article English OPEN
Taïbi, Khaled; del Campo, Antonio D.; Vilagrosa, Alberto; Bellés, José M.; López-Gresa, María Pilar; Pla, Davinia; Calvete, Juan J.; López-Nicolás, José M.; Mulet, José M.;

Drought is one of the main constraints determining forest species growth, survival and productivity, and therefore one of the main limitations for reforestation or afforestation. The aim of this study is to characterize the drought response at the physiological and mole... View more
  • References (52)
    52 references, page 1 of 6

    Alcázar R. Altabella T. Marco F. Bortolotti C. Reymond M. Koncz C. (2010). Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231 1237–1249. 10.1007/s00425-010-1130-0

    Atzmon N. Moshe Y. Schiller G. (2004). Ecophysiological response to severe drought in Pinus halepensis Mill. trees of two provenances. Plant Ecol. 171 15–22. 10.1023/B:VEGE.0000029371.44518.38

    Baquedano F. J. Castillo F. J. (2006). Comparative ecophysiological effects of drought on seedlings of the Mediterranean water-saver Pinus halepensis and water spenders Quercus coccifera and Quercus ilex. Trees-Struct. Funct. 20 689–700. 10.1007/s00468-006-0084-0

    Baquedano F. J. Valladares F. Castillo F. J. (2008). Phenotypic plasticity blurs ecotypic divergence in the response of Quercus coccifera and Pinus halepensis to water stress. Eur. J. Forest Res. 127 495–506. 10.1007/s10342-008-0232-8

    Bartlett M. K. Scoffoni C. Sack L. (2012). The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: a global meta-analysis. Ecol. Lett. 15 393–405. 10.1111/j.1461-0248.2012.01751.x

    Bradford M. M. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilising the principle of protein-dye binding. Anal. Biochem. 72 248–254. 10.1016/0003-2697(76)90527-3

    Chen H. Jiang J. (2010). Osmotic adjustment and plant adaptation to environmental changes related to drought and salinity. Environ. Rev. 18 309–319. 10.1139/A10-014

    Cuesta B. Villar-Salvador P. Puértolas J. Jacobs D. F. Rey Benayas J. M. (2010). Why do large, nitrogen rich seedlings better resist stressful transplanting conditions? A physiological analysis in two functionally contrasting Mediterranean forest species. For. Ecol. Manage. 260 71–78. 10.1016/j.foreco.2010.04.002

    Duncan D. B. (1955). Multiple range and multiple F-tests. Biometrics 11 1–42. 10.2307/3001478

    Eichel J. González J. C. Hotze M. Matthews R. G. Schröder J. (1995). Vitamin-B12-independent methionine synthase from a higher plant (Catharanthus roseus). Molecular characterization, regulation, heterologous expression, and enzyme properties. Eur. J. Biochem. 230 1053–1058. 10.1111/j.1432-1033.1995.tb20655.x

  • Related Organizations (2)
  • Metrics
Share - Bookmark