Retention capacity of correlated surfaces

Article, Preprint English OPEN
Schrenk, K. J. ; Araújo, N. A. M. ; Ziff, R. M. ; Herrmann, H. J. (2014)
  • Journal: Physical Review E - Statistical, Nonlinear, and Soft Matter Physics (issn: 1539-3755)
  • Related identifiers: doi: 10.1103/PhysRevE.89.062141
  • Subject: Condensed Matter - Statistical Mechanics | Physics - Computational Physics
    arxiv: Physics::Geophysics

We extend the water retention model [C. L. Knecht et al., Phys. Rev. Lett. 108, 045703 (2012)] to correlated random surfaces. We find that the retention capacity of discrete random landscapes is strongly affected by spatial correlations among the heights. This phenomenon is related to the emergence of power-law scaling in the lake volume distribution. We also solve the uncorrelated case exactly for a small lattice and present bounds on the retention of uncorrelated landscapes.
  • References (41)
    41 references, page 1 of 5

    [6] K. J. Schrenk, N. A. M. Araujo, J. S. Andrade Jr., and H. J. Herrmann, Sci. Rep. 2, 348 (2012).

    [7] K. J. Schrenk, N. Pose, J. J. Kranz, L. V. M. van Kessenich, N. A. M. Araujo, and H. J. Herrmann, Phys. Rev. E 88, 052102 (2013).

    [8] A.-L. Barabasi and H. E. Stanley, Fractal Concepts in Surface Growth (Cambridge University Press, New York, 1995).

    [9] A. D. Araujo, A. A. Moreira, H. A. Makse, H. E. Stanley, and J. S. Andrade Jr., Phys. Rev. E 66, 046304 (2002).

    [10] P. Le Doussal and K. J. Wiese, Phys. Rev. E 79, 051105 (2009).

    [11] T. Xu, I. D. Moore, and J. C. Gallant, Geomorphology 8, 245 (1993).

    [12] A. Czirok, E. Somfai, and T. Vicsek, Phys. Rev. Lett. 71, 2154 (1993).

    [13] R. Pastor-Satorras and D. H. Rothman, Phys. Rev. Lett. 80, 4349 (1998).

    [14] V. I. Nikora, C. P. Pearson, and U. Shankar, Landscape Ecol. 14, 17 (1999).

    [15] H. A. Makse, J. S. Andrade Jr., M. Batty, S. Havlin, and H. E. Stanley, Phys. Rev. E 58, 7054 (1998).

  • Metrics
    No metrics available
Share - Bookmark