Retention capacity of correlated surfaces

Article, Preprint English OPEN
Schrenk, K. J.; Araújo, N. A. M.; Ziff, R. M.; Herrmann, H. J.;
(2014)

We extend the water retention model [C. L. Knecht et al., Phys. Rev. Lett. 108, 045703 (2012)] to correlated random surfaces. We find that the retention capacity of discrete random landscapes is strongly affected by spatial correlations among the heights. This phenomeno... View more
  • References (41)
    41 references, page 1 of 5

    [6] K. J. Schrenk, N. A. M. Araujo, J. S. Andrade Jr., and H. J. Herrmann, Sci. Rep. 2, 348 (2012).

    [7] K. J. Schrenk, N. Pose, J. J. Kranz, L. V. M. van Kessenich, N. A. M. Araujo, and H. J. Herrmann, Phys. Rev. E 88, 052102 (2013).

    [8] A.-L. Barabasi and H. E. Stanley, Fractal Concepts in Surface Growth (Cambridge University Press, New York, 1995).

    [9] A. D. Araujo, A. A. Moreira, H. A. Makse, H. E. Stanley, and J. S. Andrade Jr., Phys. Rev. E 66, 046304 (2002).

    [10] P. Le Doussal and K. J. Wiese, Phys. Rev. E 79, 051105 (2009).

    [11] T. Xu, I. D. Moore, and J. C. Gallant, Geomorphology 8, 245 (1993).

    [12] A. Czirok, E. Somfai, and T. Vicsek, Phys. Rev. Lett. 71, 2154 (1993).

    [13] R. Pastor-Satorras and D. H. Rothman, Phys. Rev. Lett. 80, 4349 (1998).

    [14] V. I. Nikora, C. P. Pearson, and U. Shankar, Landscape Ecol. 14, 17 (1999).

    [15] H. A. Makse, J. S. Andrade Jr., M. Batty, S. Havlin, and H. E. Stanley, Phys. Rev. E 58, 7054 (1998).

  • Related Organizations (3)
  • Metrics
Share - Bookmark