A mathematical and numerical analysis of the Maxwell-Stefan diffusion equations

Article English OPEN
Boudin, Laurent; Grec, Bérénice; Salvarani, Francesco;
  • Publisher: American Institute of Mathematical Sciences
  • Related identifiers: doi: 10.3934/dcdsb.2012.17.1427
  • Subject: [MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA] | [ MATH.MATH-AP ] Mathematics [math]/Analysis of PDEs [math.AP] | [ MATH.MATH-NA ] Mathematics [math]/Numerical Analysis [math.NA] | [MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP]

International audience; We consider the Maxwell-Stefan model of diffusion in a multicomponent gaseous mixture. After focusing on the main differences with the Fickian diffusion model, we study the equations governing a three-component gas mixture. We provide a qualitati... View more
  • References (20)
    20 references, page 1 of 2

    [1] M. Bebendorf. A note on the Poincar´e inequality for convex domains. Z. Anal. Anwendungen, 22(4):751-756, 2003.

    [2] L. Boudin, D. G¨otz, and B. Grec. Diffusive models for the air in the acinus. ESAIM Proc., 2010. To be published.

    [3] H.K. Chang. Multicomponent diffusion in the lung. Fed. Proc., 39(10):2759-2764, 1980.

    [4] J. Crank. The mathematics of diffusion. Clarendon Press, Oxford, second edition, 1975.

    [5] H. Darcy. Les fontaines publiques de la ville de Dijon. V. Dalmont, Paris, 1856.

    [6] J. B. Duncan and H. L. Toor. An experimental study of three component gas diffusion. AIChE Journal, 8(1):38-41, 1962.

    [7] A. Ern and V. Giovangigli. Multicomponent transport algorithms, volume 24 of Lecture Notes in Physics. New Series M: Monographs. Springer-Verlag, Berlin, 1994.

    [8] A. Ern and V. Giovangigli. Projected iterative algorithms with application to multicomponent transport. Linear Algebra Appl., 250:289-315, 1997.

    [9] L. C. Evans. Partial differential equations, volume 19 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, second edition, 2010.

    [10] A. Fick. On liquid diffusion. Phil. Mag., 10(63):30-39, 1855.

  • Metrics
Share - Bookmark