Share  Bookmark

 Download from


 Funded by

[1] L. Ambrosio, N. Gigli and G. Savare´, Metric measure spaces with Riemannian Ricci curvature bounded from below, arXiv:1109.0222.
[2] K. Ball, E. A. Carlen and E. H. Lieb, Sharp uniform convexity and smoothness inequalities for trace norms, Invent. Math. 115 (1994), 463482.
[3] D. Bao, S. S. Chern and Z. Shen, An introduction to RiemannFinsler geometry, SpringerVerlag, New York, 2000.
[4] J. Cheeger, Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Analy. 9 (1999) 428517.
[5] S. Y. Cheng and S. T. Yau, Differential equations on riemannian manifolds and their geometric applications, Comm. Pure Appl. Math. 28 (1975), 333354 .
[6] P. Hajlasz and P. Koskela, Sobolev meets Poincare´, C. R. Acad Sci. Paris 320 (1995), 12111215.
[7] B. Hua and C. Xia, A note on local gradient estimate on Alexandrov spaces, arXiv:1301.4810, to appear in Tohoku Math. J. (2)
[8] J. Lott and C. Villani, Ricci curvature for metricmeasure spaces via optimal transport, Ann. of Math. 169 (2009), 903991.
[9] O. Munteanu and J. Wang, Smooth metric measure spaces with non negative curvature. Comm. Anal. Geom. 19 (2011) 451 486.
[10] S. Ohta, Finsler interpolation inequalities, Calc. Var. Partial Differential Equations 36 (2009), 211 249.