Marine Microphytobenthic Assemblage Shift along a Natural Shallow-Water CO2 Gradient Subjected to Multiple Environmental Stressors

Article, Other literature type English OPEN
Johnson, Vivienne; Brownlee, Colin; Milazzo, Marco; Hall-Spencer, Jason;
  • Publisher: MDPI AG
  • Journal: Journal of Marine Science and Engineering (issn: 2077-1312)
  • Publisher copyright policies & self-archiving
  • Identifiers: doi: 10.3390/jmse3041425
  • Subject: Mediterranean | ocean acidification | VM1-989 | Naval architecture. Shipbuilding. Marine engineering | diatoms | GC1-1581 | cyanobacteria | multiple stressors | Oceanography | microphytobenthos
    mesheuropmc: fungi

Predicting the effects of anthropogenic CO2 emissions on coastal ecosystems requires an understanding of the responses of algae, since these are a vital functional component of shallow-water habitats. We investigated microphytobenthic assemblages on rock and sandy habit... View more
  • References (94)
    94 references, page 1 of 10

    Hönisch, B.; Ridgwell, A.; Schmidt, D.N.; Thomas, E.; Gibbs, S.J.; Sluijs, A.; Zeebe, R.; Kump, L.; Martindale, R.C.; Greene, S.E.; et al. The geological record of ocean acidification. Science 2012, 335, 1058-1063.

    Connell, S.D.; Kroeker, K.J.; Fabricius, K.E.; Kline, D.I.; Russell, B.D. The other ocean acidification problem: CO2 as a resource among competitors for ecosystem dominance. Philos. Trans. R. Soc. B 2013, 368, doi:10.1098/rstb.2012.0442.

    Giordano, M.; Beardall, J.; Raven, J.A. CO2 concentrating mechanisms in algae: Mechanisms, environmental modulation, and evolution. Annu. Rev. Plant Biol. 2005, 56, 99-131.

    Beardall, J.; Giordano, M. Ecological implications of microalgal and cyanobacterial CO2 concentrating mechanisms and their regulation. Funct. Plant Biol. 2002, 29, 335-347.

    Collins, S.; Bell, G. Phenotypic consequences of 1000 generations of selection at elevated CO2 in a green alga. Nature 2004, 431, 566-569.

    Trimborn, S.; Wolf-Gladrow, D.; Ritcher, K-L.; Rost, B. The effect of pCO2 on carbon acquisition and intracellular assimilation in four marine diatoms. J. Exp. Mar. Biol. Ecol. 2009, 376, 26-36.

    7. Rost, B.; Zondervan, I.; Wolf-Gladrow, D. Sensitivity of phytoplankton to future changes in ocean carbonate chemistry: Current knowledge, contradictions and research directions. Mar. Ecol. Prog. Ser. 2008, 373, 227-237.

    8. Rossoll, D.; Bermúdez, R.; Hauss, H.; Schulz, K.G.; Riebesell, U.; Sommer, U.; Winder, M. Ocean acidification-induced food quality deterioration constrains trophic transfer. PLoS ONE 2012, 7, doi:10.1371/journal.pone.0034737.

    9. Sinutok, S.; Hill, R.; Doblin, M.A.; Wuhrer, R.; Ralph, P.J. Warmer more acidic conditions cause decreased productivity and calcification in subtropical coral reef sediment-dwelling calcifiers. Limnol. Oceangr. 2011, 56, 1200-1212.

    10. Connell, S.D.; Russell, B.D. The direct effects of increasing CO2 and temperature on non-calcifying organisms: Increasing the potential for phase shifts in kelp forests. Proc. R. Soc. Lond. B 2010, 277, 1409-1415.

  • Related Research Results (3)
  • Related Organizations (1)
  • Metrics
Share - Bookmark