publication . Article . 2017

A Membrane‐Free Redox Flow Battery with Two Immiscible Redox Electrolytes

Navalpotro, Paula; Palma, Jesus; Anderson, Marc; Marcilla, Rebeca;
Open Access English
  • Published: 01 Jul 2017 Journal: Angewandte Chemie (International Ed. in English), volume 56, issue 41, pages 12,460-12,465 (issn: 1433-7851, eissn: 1521-3773, Copyright policy)
  • Publisher: John Wiley and Sons Inc.
Abstract
Abstract Flexible and scalable energy storage solutions are necessary for mitigating fluctuations of renewable energy sources. The main advantage of redox flow batteries is their ability to decouple power and energy. However, they present some limitations including poor performance, short‐lifetimes, and expensive ion‐selective membranes as well as high price, toxicity, and scarcity of vanadium compounds. We report a membrane‐free battery that relies on the immiscibility of redox electrolytes and where vanadium is replaced by organic molecules. We show that the biphasic system formed by one acidic solution and one ionic liquid, both containing quinoyl species, be...
Subjects
free text keywords: Communication, Communications, Batteries, electrochemistry, immiscible electrolytes, membrane-free battery, quinones, redox-flow battery
Related Organizations
Funded by
EC| MFreeB
Project
MFreeB
Membrane-Free Redox Flow Batteries
  • Funder: European Commission (EC)
  • Project Code: 726217
  • Funding stream: H2020 | ERC | ERC-COG
41 references, page 1 of 3

1 J.Rugolo, M. J.Aziz, Energy Environ. Sci.2012, 5, 7151.

2 Z.Yang, J.Zhang, M. C. W.Kintner-meyer, X.Lu, D.Choi, J. P.Lemmon, Chem. Rev.2011, 111, 3577.21375330 [PubMed]

3 G. L.Solo veichik, Chem. Rev.2015, 115, 11533.26389560 [PubMed]

4 P.Leung, X.Li, C. P.de León, L.Berlouis, C. T. J.Low, F. C.Walsh, RSC Adv.2012, 2, 10125.

5 M.Skyllas-Kazacos, M.Rychcik, R. G.Robins, A. G.Fane, J. Electrochem. Soc.1986, 133, 1057.

6 M.Park, J.Ryu, W.Wang, J.Cho, Nat. Rev. Mater.2016, 2, 16080.

7 J.Winsberg, T.Hagemann, T.Janoschka, M. D.Hager, U. S.Schubert, Angew. Chem. Int. Ed.2017, 56, 686;

8 B.Yang, L.Hoober-Burkhardt, F.Wang, G. K.Surya Prakash, S. R.Narayanan, J. Electrochem. Soc.2014, 161, A 1371.

9 K.Lin, Q.Chen, M. R.Gerhardt, L.Tong, S. B.Kim, L.Eisenach, A. W.Valle, D.Hardee, R. G.Gordon, M. J.Aziz, et al., Science 2015, 349, 1529.26404834 [PubMed]

10 R. M.Darling, K. G.Gallagher, J. A.Kowalski, S.Ha, F. R.Brushett, Energy Environ. Sci.2014, 7, 3459.

11 A.Ejigu, P. A.Greatorex-Davies, D. A.Walsh, Electrochem. Commun.2015, 54, 55.

12 F. R.Brushett, J. T.Vaughey, A. N.Jansen, Adv. Energy Mater.2012, 2, 1390.

13 Z.Li, S.Li, S.Liu, K.Huang, D.Fang, F.Wang, S.Peng, Electrochem. Solid-State Lett.2011, 14, A 171.

14 S. K.Park, J.Shim, J.Yang, K. H.Shin, C. S.Jin, B. S.Lee, Y. S.Lee, J. D.Jeon, Electrochem. Commun.2015, 59, 68.

15 X.Wei, W.Duan, J.Huang, L.Zhang, B.Li, D.Reed, W.Xu, V.Sprenkle, W.Wang, ACS Energy Lett.2016, 1, 705.

41 references, page 1 of 3
Any information missing or wrong?Report an Issue