publication . Preprint . 2020

Energy-Momentum portal to dark matter and emergent gravity

Anastasopoulos, Pascal; Kaneta, Kunio; Mambrini, Yann; Pierre, Mathias;
Open Access English
  • Published: 04 Aug 2020
Abstract
We propose a new scenario where dark matter belongs to a secluded sector coupled to the Standard Model through energy--momentum tensors. Our model is motivated by constructions where gravity {\it emerges} from a hidden sector, the graviton being identified by the kinetic term of the fields in the secluded sector. Supposing that the lighter particle of the secluded sector is the dark component of the Universe, we show that we can produce it in a sufficiently large amount despite the suppressed couplings of the theory, thanks to large temperatures of the thermal bath in the early stage of the Universe.
Subjects
arXiv: High Energy Physics::Phenomenology
free text keywords: High Energy Physics - Phenomenology, Astrophysics - Cosmology and Nongalactic Astrophysics, High Energy Physics - Theory, * Automatic Keywords *, gravitation: emergence, coupling: suppression, dark matter, energy-momentum, hidden sector, temperature, graviton, thermal, kinetic, [PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph], [PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph], [PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]
Funded by
EC| ELUSIVES
Project
ELUSIVES
The Elusives Enterprise: Asymmetries of the Invisible Universe
  • Funder: European Commission (EC)
  • Project Code: 674896
  • Funding stream: H2020 | MSCA-ITN-ETN
,
FWF| String Theory meets Experiment
Project
  • Funder: Austrian Science Fund (FWF) (FWF)
  • Project Code: P 30531
  • Funding stream: Einzelprojekte
,
EC| InvisiblesPlus
Project
InvisiblesPlus
InvisiblesPlus
  • Funder: European Commission (EC)
  • Project Code: 690575
  • Funding stream: H2020 | MSCA-RISE
52 references, page 1 of 4

9 There are two exceptions, however, couplings of the SM with the hidden sector via the Higgs mass term and via the field strength of the hypercharge. The first term is related to the hierarchy problem. The second is related to anomalies, and the relevant coupling is zero since the hypercharge is massless and anomaly free.

10 The spin- 32 superpartner of the graviton. pascal.anastasopoulos@univie.ac.at y kkaneta@umn.edu z yann.mambrini@ijclab.in2p3.fr x mathias.pierre@uam.es

[1] F. Zwicky, “Die Rotverschiebung von extragalaktischen Nebeln,” Helv. Phys. Acta 6 (1933), 110-127 doi:10.1007/s10714-008-0707-4 [OpenAIRE]

[2] H. W. Babcock, "The rotation of the Andromeda Nebula". Lick Observatory Bulletin N. 498.

[3] J. Ostriker and P. Peebles, Astrophys. J. 186 (1973), 467-480 doi:10.1086/152513

[4] J. Gunn, B. Lee, I. Lerche, D. Schramm and G. Steigman, Astrophys. J. 223 (1978), 1015-1031 doi:10.1086/156335

[5] E. Aprile et al. [XENON Collaboration], Phys. Rev. Lett. 121 (2018) no.11, 111302 [arXiv:1805.12562 [astroph.CO]].

[6] D. S. Akerib et al. [LUX Collaboration], Phys. Rev. Lett. 118 (2017) no.2, 021303 [arXiv:1608.07648 [astroph.CO]].

[7] X. Cui et al. [PandaX-II Collaboration], Phys. Rev. Lett. 119 (2017) no.18, 181302 [arXiv:1708.06917 [astroph.CO]].

[8] J. A. Casas, D. G. Cerdeño, J. M. Moreno and J. Quilis, JHEP 1705 (2017) 036 [arXiv:1701.08134 [hep-ph]]. A. Djouadi, O. Lebedev, Y. Mambrini and J. Quevillon, Phys. Lett. B 709 (2012) 65 [arXiv:1112.3299 [hep-ph]]; A. Djouadi, A. Falkowski, Y. Mambrini and J. Quevillon, Eur. Phys. J. C 73 (2013) no.6, 2455 [arXiv:1205.3169 [hep-ph]]; O. Lebedev, H. M. Lee and Y. Mambrini, Phys. Lett. B 707 (2012) 570 [arXiv:1111.4482 [hepph]]; Y. Mambrini, Phys. Rev. D 84 (2011) 115017 [arXiv:1108.0671 [hep-ph]].

[9] J. Ellis, A. Fowlie, L. Marzola and M. Raidal, Phys. Rev. D 97, no.11, 115014 (2018) [arXiv:1711.09912 [hepph]]; G. Arcadi, Y. Mambrini and F. Richard, JCAP 1503 (2015) 018 [arXiv:1411.2985 [hep-ph]]; J. Kearney, N. Orlofsky and A. Pierce, Phys. Rev. D 95, no.3, 035020 (2017) [arXiv:1611.05048 [hep-ph]]; M. Escudero, A. Berlin, D. Hooper and M. X. Lin, JCAP 1612 (2016) 029 [arXiv:1609.09079 [hep-ph]].

[10] P. A. R. Ade et al. [Planck Collaboration], Astron. Astrophys. 594, A13 (2016) [arXiv:1502.01589 [astroph.CO]]; N. Aghanim et al. [Planck Collaboration], arXiv:1807.06209 [astro-ph.CO].

[11] G. Arcadi, M. Dutra, P. Ghosh, M. Lindner, Y. Mambrini, M. Pierre, S. Profumo and F. S. Queiroz, Eur. Phys. J. C 78 (2018) no.3, 203 [arXiv:1703.07364 [hepph]].

[12] J. Aalbers et al. [DARWIN], JCAP 11 (2016), 017 doi:10.1088/1475-7516/2016/11/017 [arXiv:1606.07001 [astro-ph.IM]].

[13] E. Aprile et al. [XENON], [arXiv:2006.09721 [hepex]]; M. Lindner, Y. Mambrini, T. B. de Melo and F. S. Queiroz, [arXiv:2006.14590 [hep-ph]].

52 references, page 1 of 4
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue