Automatic Generation of Facial Expression Using Triangular Geometric Deformation

Article English OPEN
Sheu, Jia-Shing; Hsieh, Tsu-Shien; Shou, Ho-Nien;
  • Publisher: Elsevier BV
  • Journal: Journal of Applied Research and Technology,volume 12,issue 6,pages1,115-1,130 (issn: 1665-6423)
  • Publisher copyright policies & self-archiving
  • Related identifiers: doi: 10.1016/s1665-6423(14)71671-2
  • Subject: geometric transformation | Facial expression generation | feature capture | image correction
    acm: ComputingMethodologies_COMPUTERGRAPHICS | ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION

This paper presents an image deformation algorithm and constructs an automatic facial expression generation system to generate new facial expressions in neutral state. After the users input the face image in a neutral state into the system, the system separates the poss... View more
  • References (27)
    27 references, page 1 of 3

    [1]_A. Mehrabian, “Communication without words,” Psychology Today, vol. 2, no. 9, pp. 52-55, 1968.

    [2] R. Brunelli et al., “Face recognition: Features versus templates,” IEEE T. Pattern Anal. Mach. Intell., vol. 15, pp. 1042-1052, 1993.

    [3] A. Yullie et al., “Feature exaction from faces using deformable templates,” Int. J. Comput. Vision, vol. 8, no. 2, pp. 99-111, 1992.

    [4] G. tzirita and C. Garcia, “Face detection using quantized skin color region merging and wavelet packet analysis,” IEEE T. Multimedia, vol. 1, no. 3, pp. 264-277, 1999.

    [5] M. Sharif et al., “Enhanced and Fast Face Recognition by Hashing Algorithm,” J. Appl. Res. Technol., vol. 10, no. 8, pp. 607-617, 2012.

    [6] M. Turk and A. Pentland, “Eigenfaces for recognition,” J. Cog. Neurosci., vol. 3, no. 1, pp. 71-86, 1991.

    [7] L. Sirovich and M. Kirby, “Low-dimensional procedure for the characterization of human faces,” J. Opt. Soc. Am. A, vol. 4, no. 3, pp. 519-524, 1987.

    [8].S. Theodoridis and K. Koutroumbas, “Pattern recognition,” 4th ed., Burlington: Academic Press, 2009.

    [9]-A. Pentland et al., “View-Based and modular eigenspaces for face recognition,” 1994 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 81-94, Jun. 1994.

    [10] M. Nazi et al., “PSO-GA Based Optimized Feature Selection Using Facial and Clothing Information for Gender Classification,” J. Appl. Res. Technol., vol. 12, pp. 145-152, 2014.

  • Metrics
Share - Bookmark