Neuroimaging of amblyopia and binocular vision: a review

Article English OPEN
Joly, Olivier ; Frankó, Edit (2014)
  • Publisher: Frontiers Media S.A.
  • Journal: Frontiers in Integrative Neuroscience, volume 8 (issn: 1662-5145, eissn: 1662-5145)
  • Related identifiers: pmc: PMC4123726, doi: 10.3389/fnint.2014.00062
  • Subject: stereopsis | Review Article | amblyopia | visual cortex | Neuroscience | binocular vision | neuroimaging
    mesheuropmc: eye diseases | genetic structures

Amblyopia is a cerebral visual impairment considered to derive from abnormal visual experience (e.g., strabismus, anisometropia). Amblyopia, first considered as a monocular disorder, is now often seen as a primarily binocular disorder resulting in more and more studies examining the binocular deficits in the patients. The neural mechanisms of amblyopia are not completely understood even though they have been investigated with electrophysiological recordings in animal models and more recently with neuroimaging techniques in humans. In this review, we summarize the current knowledge about the brain regions that underlie the visual deficits associated with amblyopia with a focus on binocular vision using functional magnetic resonance imaging. The first studies focused on abnormal responses in the primary and secondary visual areas whereas recent evidence shows that there are also deficits at higher levels of the visual pathways within the parieto-occipital and temporal cortices. These higher level areas are part of the cortical network involved in 3D vision from binocular cues. Therefore, reduced responses in these areas could be related to the impaired binocular vision in amblyopic patients. Promising new binocular treatments might at least partially correct the activation in these areas. Future neuroimaging experiments could help to characterize the brain response changes associated with these treatments and help devise them.
  • References (138)
    138 references, page 1 of 14

    Adams D. L. Zeki S. (2001). Functional organization of macaque V3 for stereoscopic depth. J. Neurophysiol. 86 2195–2203.

    Algaze A. Roberts C. Leguire L. Schmalbrock P. Rogers G. (2002). Functional magnetic resonance imaging as a tool for investigating amblyopia in the human visual cortex: a pilot study. J. AAPOS 6 300–308. 10.1067/mpa.2002.124902

    Al-Haddad C. E. Mollayess G. M. E. L. Cherfan C. G. Jaafar D. F. Bashshur Z. F. (2011). Retinal nerve fibre layer and macular thickness in amblyopia as measured by spectral-domain optical coherence tomography. Br. J. Ophthalmol. 95 1696–1699. 10.1136/bjo.2010.195081

    Anzai A. Chowdhury S. A. DeAngelis G. C. (2011). Coding of stereoscopic depth information in visual areas V3 and V3A. J. Neurosci. 31 10270–10282. 10.1523/JNEUROSCI.5956-10.2011

    Arden G. B. Barnard W. M. Mushin A. S. (1974). Visually evoked responses in amblyopia. Br. J. Ophthalmol. 58 183–192. 10.1136/bjo.58.3.183

    Attebo K. Mitchell P. Cumming R. Smith W. Jolly N. Sparkes R. (1998). Prevalence and causes of amblyopia in an adult population. Ophthalmology 105 154–159. 10.1016/S0161-6420(98)91862-0

    Backus B. T. Fleet D. J. Parker A. J. Heeger D. J. (2001). Human cortical activity correlates with stereoscopic depth perception. J. Neurophysiol. 86 2054–2068.

    Baker D. H. Meese T. S. Mansouri B. Hess R. F. (2007). Binocular summation of contrast remains intact in strabismic amblyopia. Invest. Op hthalmol. Vis. Sci. 48 5332–5338. 10.1167/iovs.07-0194

    Bankó É. M. Körtvélyes J. Németh J. Weiss B. Vidnyánszky Z. (2013a). Amblyopic deficits in the timing and strength of visual cortical responses to faces. Cortex 49 1013–1024. 10.1016/j.cortex.2012.03.021

    Bankó É. M. Körtvélyes J. Weiss B. Vidnyánszky Z. (2013b). How the visual cortex handles stimulus noise: insights from amblyopia. PLoS ONE 8:e66583. 10.1371/journal.pone.0066583

  • Related Research Results (3)
  • Metrics
    No metrics available
Share - Bookmark