publication . Article . Other literature type . Conference object . 2016

Potential and challenges of the physics measurements with very forward detectors at linear colliders

Božović-Jelisavčić, Ivanka; Kačarević, Goran; Lukić, Strahinja; Poss, S.; Sailer, A.; Smiljanić, Ivan; FCAL Collaboration;
Open Access English
  • Published: 01 Apr 2016 Journal: Nuclear and Particle Physics Proceedings (issn: 24056014, Copyright policy)
  • Publisher: Elsevier B.V.
  • Country: Serbia
Abstract
The instrumentation of the very forward region of a detector at a future linear collider (ILC, CLIC) is briefly reviewed. The status of the FCAL R and D activity is given with emphasis on physics and technological challenges. The current status of studies on absolute luminosity measurement, luminosity spectrum reconstruction and high-energy electron identification with the forward calorimeters is given. The impact of FCAL measurements on physics studies is illustrated with an example of the sigma(HWW).BR(H - GT mu(+)mu(-)) measurement at 1.4 TeV CLIC. 37th International Conference on High Energy Physics (ICHEP), Jul 02-09, 2014, Valencia, Spain
Subjects
free text keywords: forward region, calorimeters, luminosity, particle identification, linear collider, Particle Physics - Phenomenology, Calorimeter, Particle physics, Detector, Electron, Instrumentation, Collider, law.invention, law, Nuclear physics, Physics
23 references, page 1 of 2

[1] T. Benhke et al. (Editors), The International Linear Collider - Technical Design Report, Vol. 4: Detectors, 2013.

[2] M. Aicheler, P. Burrows, M. Draper, T. Garvey, P. Lebrun, K. Peach, N. Phinney, H. Schmickler, D. Schulte and N. Toge (Editors), A Multi-TeV linear collider based on CLIC technology: CLIC Conceptual Design Report, CERN-2012-007

[3] P. Bambade, V. Drugakov, and W. Lohmann, “The Impact of BeamCal performance at different ILC beam parameters and crossing angles on stau searches” Pramana 69, 1123-1128, arXiv:physics/0610145 [physics]. LAL-06-145, 2007.

[4] Y. Sato, Study of Pair-monitor for ILD, Proceedings of the Workshop of the Collaboration on Forward Calorimetry at ILC, Vinca Inst. of Nucl. Sciences, 22-23 September 2008, 2008.

[5] C. Grah and A. Sapronov, “Beam parameter determination using beamstrahlung photons and incoherent pairs” JINST 3 (2008) P10004. [OpenAIRE]

[6] J. Blocki et al., Silicon Sensors Prototype for LumiCal Calorimeter, Eudet-Memo-2009-07, http://www.eudet.org/e26/e28/e42441, 2009.

[7] H. Abramowitz et al. [FCAL Collaboration], Performance of a fully instrumented sensor plane of the forward calorimeter of a LC detector, draft, 2014.

[8] M. Idzik, Sz. Kulis, D. Przyborowski, Development of frontend electronics for the luminosity detector at ILC, Nucl. Inst. And Meth. A, vol. 608, pp.169-174, 2009.

[9] M. Idzik, K. Swientek, T. Fiutowski, Sz. Kulis, P. Ambalathankandy, A power scalable 10-bit pipeline ADC for Luminosity Detector at ILC, JINST 6 P01004, 2011. [OpenAIRE]

[10] J. A. Aguilar et al., Luminometer for the future International Linear Collider - simulation and beam test results, Physics Procedia 00, 2013.

[11] I. Gregor, http://www.desy.de/~gregor/MVD_Telescope, 2010

[12] OPAL Collaboration, Precision luminosity for Z0 line shape measurements with a silicon tungsten calorimeter, Eur.Phys.J. C14 (2000) 373-425, [hep-ex/9910066].

[13] ALEPH Collaboration, Measurement of the Z resonance parameters at LEP, Eur.Phys.J. C14 (2000) 1-50.

[14] L3 Collaboration, Measurements of cross-sections and forward backward asymmetries at the Z resonance and determination of electroweak parameters, Eur.Phys.J. C16 (2000) 1-40, [hep-ex/0002046].

[15] A. Arbuzov et al., The present theoretical error on the Bhabha scattering cross section in the luminometry region at LEP, Physics Letters B383 (1996) 238.

23 references, page 1 of 2
Abstract
The instrumentation of the very forward region of a detector at a future linear collider (ILC, CLIC) is briefly reviewed. The status of the FCAL R and D activity is given with emphasis on physics and technological challenges. The current status of studies on absolute luminosity measurement, luminosity spectrum reconstruction and high-energy electron identification with the forward calorimeters is given. The impact of FCAL measurements on physics studies is illustrated with an example of the sigma(HWW).BR(H - GT mu(+)mu(-)) measurement at 1.4 TeV CLIC. 37th International Conference on High Energy Physics (ICHEP), Jul 02-09, 2014, Valencia, Spain
Subjects
free text keywords: forward region, calorimeters, luminosity, particle identification, linear collider, Particle Physics - Phenomenology, Calorimeter, Particle physics, Detector, Electron, Instrumentation, Collider, law.invention, law, Nuclear physics, Physics
23 references, page 1 of 2

[1] T. Benhke et al. (Editors), The International Linear Collider - Technical Design Report, Vol. 4: Detectors, 2013.

[2] M. Aicheler, P. Burrows, M. Draper, T. Garvey, P. Lebrun, K. Peach, N. Phinney, H. Schmickler, D. Schulte and N. Toge (Editors), A Multi-TeV linear collider based on CLIC technology: CLIC Conceptual Design Report, CERN-2012-007

[3] P. Bambade, V. Drugakov, and W. Lohmann, “The Impact of BeamCal performance at different ILC beam parameters and crossing angles on stau searches” Pramana 69, 1123-1128, arXiv:physics/0610145 [physics]. LAL-06-145, 2007.

[4] Y. Sato, Study of Pair-monitor for ILD, Proceedings of the Workshop of the Collaboration on Forward Calorimetry at ILC, Vinca Inst. of Nucl. Sciences, 22-23 September 2008, 2008.

[5] C. Grah and A. Sapronov, “Beam parameter determination using beamstrahlung photons and incoherent pairs” JINST 3 (2008) P10004. [OpenAIRE]

[6] J. Blocki et al., Silicon Sensors Prototype for LumiCal Calorimeter, Eudet-Memo-2009-07, http://www.eudet.org/e26/e28/e42441, 2009.

[7] H. Abramowitz et al. [FCAL Collaboration], Performance of a fully instrumented sensor plane of the forward calorimeter of a LC detector, draft, 2014.

[8] M. Idzik, Sz. Kulis, D. Przyborowski, Development of frontend electronics for the luminosity detector at ILC, Nucl. Inst. And Meth. A, vol. 608, pp.169-174, 2009.

[9] M. Idzik, K. Swientek, T. Fiutowski, Sz. Kulis, P. Ambalathankandy, A power scalable 10-bit pipeline ADC for Luminosity Detector at ILC, JINST 6 P01004, 2011. [OpenAIRE]

[10] J. A. Aguilar et al., Luminometer for the future International Linear Collider - simulation and beam test results, Physics Procedia 00, 2013.

[11] I. Gregor, http://www.desy.de/~gregor/MVD_Telescope, 2010

[12] OPAL Collaboration, Precision luminosity for Z0 line shape measurements with a silicon tungsten calorimeter, Eur.Phys.J. C14 (2000) 373-425, [hep-ex/9910066].

[13] ALEPH Collaboration, Measurement of the Z resonance parameters at LEP, Eur.Phys.J. C14 (2000) 1-50.

[14] L3 Collaboration, Measurements of cross-sections and forward backward asymmetries at the Z resonance and determination of electroweak parameters, Eur.Phys.J. C16 (2000) 1-40, [hep-ex/0002046].

[15] A. Arbuzov et al., The present theoretical error on the Bhabha scattering cross section in the luminometry region at LEP, Physics Letters B383 (1996) 238.

23 references, page 1 of 2
Any information missing or wrong?Report an Issue