Lazer-Leach Type Conditions on Periodic Solutions of Liénard Equation with a Deviating Argument at Resonance

Other literature type, Article English OPEN
Wang, Zaihong;
(2013)
  • Publisher: Hindawi Publishing Corporation
  • Journal: issn: 1085-3375, eissn: 1687-0409
  • Publisher copyright policies & self-archiving
  • Related identifiers: doi: 10.1155/2013/906972
  • Subject: Mathematics | QA1-939 | Article Subject
    arxiv: Computer Science::Information Retrieval | Computer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)

We study the existence of periodic solutions of Liénard equation with a deviating argument $x\mathrm{\prime \prime }+f\left(x\right)x\mathrm{\text{'}}+{n}^{\mathrm{2}}x+g\left(x\left(t-\tau \right)\right)=p\left(t\right),$ where $f,g,p:\mathrm{R}\to \mathrm{R}$ are c... View more
  • References (12)
    12 references, page 1 of 2

    Huang, X., Xiang, Z.. On the existence of 2π periodic solutions of Duffing type equation x′′t+gxt-τ=pt. Chinese Science Bulletin. 1994; 39: 201-203

    Ge, W. G.. On the existence of harmonic solutions of Liénard systems. Nonlinear Analysis. 1991; 16 (2): 183-190

    Liu, B., Huang, L.. Existence and uniqueness of periodic solutions for a kind of Liénard equation with a deviating argument. Applied Mathematics Letters. 2008; 21 (1): 56-62

    Burton, T. A., Zhang, B.. Boundedness, periodicity, and convergence of solutions in a retarded Liénard equation. Annali di Matematica Pura ed Applicata. 1993; 165: 351-368

    Ma, S., Wang, Z., Yu, J.. An abstract existence theorem at resonance and its applications. Journal of Differential Equations. 1998; 145 (2): 274-294

    Nagle, R. K., Parrott, M. E.. Bounded perturbations with multiple delays of forced harmonic oscillators at resonance. Differential and Integral Equations. 1992; 5 (6): 1407-1418

    Lu, S., Ge, W.. Periodic solutions for a kind of Liénard equation with a deviating argument. Journal of Mathematical Analysis and Applications. 2004; 289 (1): 231-243

    Liu, B.. Boundedness in nonlinear oscillations at resonance. Journal of Differential Equations. 1999; 153 (1): 142-174

    Lazer, A. C., Leach, D. E.. Bounded perturbations of forced harmonic oscillators at resonance. Annali di Matematica Pura ed Applicata. 1969; 82: 49-68

    Capietto, A., Wang, Z.. Periodic solutions of Liénard equations at resonance. Differential and Integral Equations. 2003; 16 (5): 605-624

  • Similar Research Results (3)
  • Metrics
Share - Bookmark