publication . Article . 1999

On the Hierarchy of Functioning Rules in Distributed Computing

Bui, Alain; Bui, Marc; Lavault, Christian;
Open Access English
  • Published: 01 Jan 1999
  • Publisher: EDP Sciences
Abstract
International audience; In previous papers, we used a Markovian model to determine the optimal functioning rules of a distributed system in various settings. Searching optimal functioning rules amounts to solve an optimization problem under constraints. The hierarchy of solutions arising from the above problem is called the “first order hierarchy”, and may possibly yield equivalent solutions. The present paper emphasizes a specific technique for deciding between two equivalent solutions, which establishes the “second order hierarchy.
Subjects
free text keywords: [MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO], Optimization, Markov Chains, Performance evaluation, Distributed Systems, [INFO.INFO-DC]Computer Science [cs]/Distributed, Parallel, and Cluster Computing [cs.DC]

1. D. BRAND and P. ZAFIROPULO, On communicating finite-state machines, Journal of the ACM, 1983, 30 (2), pp. 323-342.

2. A. BUI, Analyse du fonctionnement d'un type d'algorithmes distribue´s, Rev. R. de Math. Pures et Appl., 1995, 40 (7-8), pp. 583-593.

3. A. BUI, Etude analytique d'algorithmes distribue´s de routage, The`se de doctorat, Universite´ Paris-7, 1994.

4. M. BUI, Tuning Distributed Control Algorithms for Optimal Functioning, J. of Global Optimization, 1992, 2, pp. 177-199.

5. M. BUI, Re´solution du Proble`me de Multi-Rendez-Vous a` l'aide d'un mode`le d'algorithme distribue´, RAIRO, 1993, 27 (2), pp. 249-264.

6. T. L. CASAVANT and J. G. KUHL, A communicating finite automata approach to modeling distributed computation and its application to distributed decision making, IEEE Trans. on Computers, 1990, 39 (5), pp. 628-639.

7. J. G. KEMENY and J. L. SNELL, Finite Markov chains, Springer, 1983.

8. B. ROZOY, On distributed languages and models for distributed computation, Res. Rept. No. 563, University Paris-11, 1990.

9. K. M. CHANDRY and J. MISRA, The Drinking Philosophers Problem, ACM TOPLAS, 1984, 6 (4), pp. 632-646.

10. G. GAO and G. V. BOCHMANN, An Virtual Ring Algorithm for the Distributed Implementation of Multi-Rendez-Vous, Tech. Rept. No. 675, Dpt IRO, Universite´ de Montre´al, 1990.

11. S. P. RANA and D. K. BANERJI, An optimal distributed solution to the dining philosophers, Res. Rept., Waystate University, Detroit, Michigan, 1987.

12. A. SEGALL, Distributed Network Protocols, IEEE transactions on Information Theory, 1983, 29 (1), pp. 23-25.

13. W. D. TAJIBNAPIS A Correctness Proof of a Topology Information Maintenance Protocol for a Distributed Computer Network, Communications of the ACM, 1977, 20 (7), pp. 477-485.

Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Article . 1999

On the Hierarchy of Functioning Rules in Distributed Computing

Bui, Alain; Bui, Marc; Lavault, Christian;