Simulation Study of Swarm Intelligence Based on Life Evolution Behavior

Article English OPEN
Yanmin Liu; Ying Bi; Changling Sui; Yuanfeng Luo; Zhuanzhou Zhang; Rui Liu;
  • Publisher: Hindawi Publishing Corporation
  • Journal: Discrete Dynamics in Nature and Society (issn: 1026-0226, eissn: 1607-887X)
  • Publisher copyright policies & self-archiving
  • Related identifiers: doi: 10.1155/2015/291298
  • Subject: Mathematics | QA1-939 | Article Subject
    acm: MathematicsofComputing_NUMERICALANALYSIS | ComputingMethodologies_ARTIFICIALINTELLIGENCE

Swarm intelligence (SI) is a new evolutionary computation technology, and its performance efficacy is usually affected by each individual behavior in the swarm. According to the genetic and sociological theory, the life evolution behavior process is influenced by the ex... View more
  • References (13)
    13 references, page 1 of 2

    Kennedy, J., Eberhart, R.. Particle swarm optimization. ; 4: 1942-1948

    Van Den Bergh, F., Engelbrecht, A. P.. A Cooperative approach to particle swarm optimization. IEEE Transactions on Evolutionary Computation. 2004; 8 (3): 225-239

    Martínez, S. Z., Coello Coello, C. A.. Hybridizing an evolutionary algorithm with mathematical programming techniques for multi-objective optimization. : 769-770

    Broyden, C. G.. The convergence of a class of double-rank minimization algorithms. Journal of the Institute of Mathematics and Applications. 1970; 6 (7): 76-90

    Deb, K., Agrawal, R. B.. Simulated binary crossover for continuous search space. Complex Systems. 1995; 9 (2): 115-148

    van den Bergh, F., Engelbrecht, A. P.. A cooperative approach to participle swam optimization. IEEE Transactions on Evolutionary Computation. 2004; 8 (3): 225-239

    Niu, B., Li, L.. A novel PSO-DE-based hybrid algorithm for global optimization. Advanced Intelligent Computing Theories and Applications. With Aspects of Artificial Intelligence: 4th International Conference on Intelligent Computing, ICIC 2008 Shanghai, China, September 15-18, 2008 Proceedings. 2008; 5227: 156-163

    Liang, J. J., Qin, A. K., Suganthan, P. N., Baskar, S.. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Transactions on Evolutionary Computation. 2006; 10 (3): 281-295

    Peram, T., Veeramachaneni, K.. Fitness-distance-ratio based particle swarm optimization. : 174-181

    Clerc, M., Kennedy, J.. The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation. 2002; 6 (1): 58-73

  • Metrics
Share - Bookmark